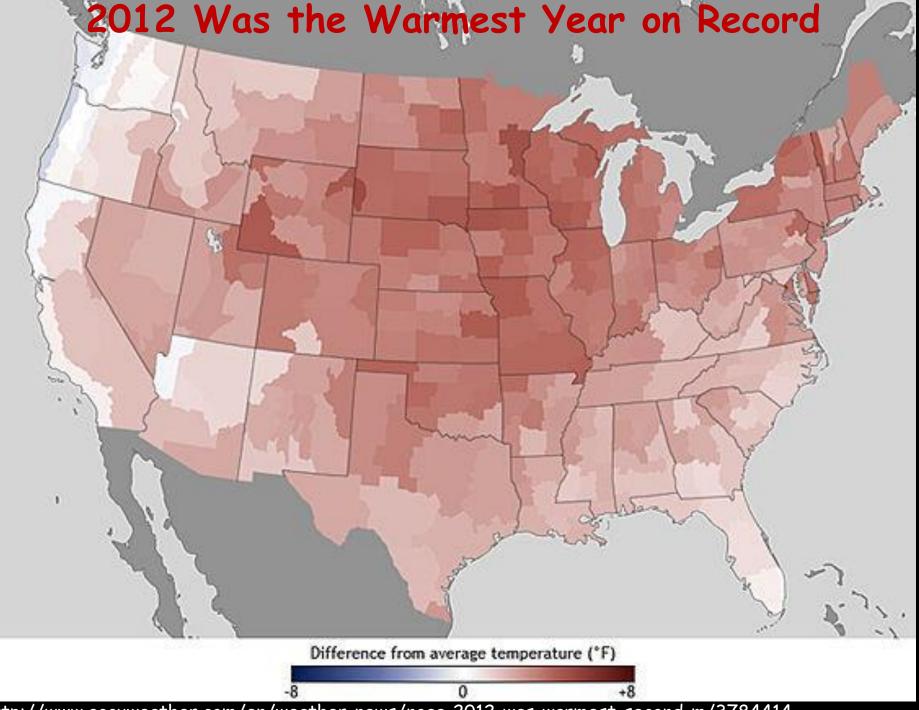
Challenges and Opportunities for Enhancing Crop Adaptation to Stressful Environments

> Mitch Tuinstra, Ph.D. Professor of Plant Breeding Purdue University



Overview

- Climate resilient agriculture
- Current trends in adaptation of crops to environmental stresses
- Challenges in efforts to integrate multiple climate adaptation traits
- Opportunities for comparative analyses of crops that exhibit unique adaptation characteristics

http://www.accuweather.com/en/weather-news/noaa-2012-was-warmest-second-m/3784414

Climate Resilient Agriculture

 Agriculture is highly sensitive to climate variability.

Distribution of insurance indemnities for crop losses in the U.S. from 1939 to 1978.

Course of even loss	
Cause of crop loss	Proportion of payments
Drought	40.8
Excess water	16.4
Cold	13.8
Hail	11.3
Wind	7
Insect	4.5
Disease	2.7
Flood	2.1
Other	1.5
J. S. Boyer, 1982. Science 218: 443-448.	

Climate Resilient Agriculture

- Agriculture is highly sensitive to climate variability.
- Genes and sources of germplasm that contribute to heat and drought tolerance are being mobilized to develop improved crop cultivars.

Genes for Abiotic Stress Tolerance in Crops

Flooding tolerance

 Sub1A is a pivotal gene for submergence tolerance in rice.

Salinity tolerance

- Saltol rice for wet, saline regions
 Nitrogen use efficiency (NUE)
- Alanine aminotransferase (AlaAT) from barley is being used as a transgene to improve NUE

- Elite temperate pool
 - Agrisure Artesian™
 Technology
 - Optimum[®] AQUAmax[™] hybrids

- Elite temperate pool
 - Agrisure Artesian™ Technology
 - Optimum[®] AQUAmax[™] hybrids
- Tropical and exotic pools

- Elite temperate pool
 - Agrisure Artesian™ Technology
 - Optimum[®] AQUAmax[™] hybrids
- Tropical and exotic pools
- Wild relatives

- Elite temperate pool
 - Agrisure Artesian™
 Technology
 - Optimum[®] AQUAmax[™] hybrids
- Tropical and exotic pools
- Wild relatives
- Transgenic traits
 - Genuity[®] DroughtGard[™] Hybrids

 Additional efforts are needed to integrate or stack multiple climate adaptation traits into new cultivars.

Two major challenges for crop improvement

- Genotype by environment and stage of development interactions for abiotic stress tolerance are complex
- 2. Efforts to combine multiple stress tolerance into a single genotype can be challenging

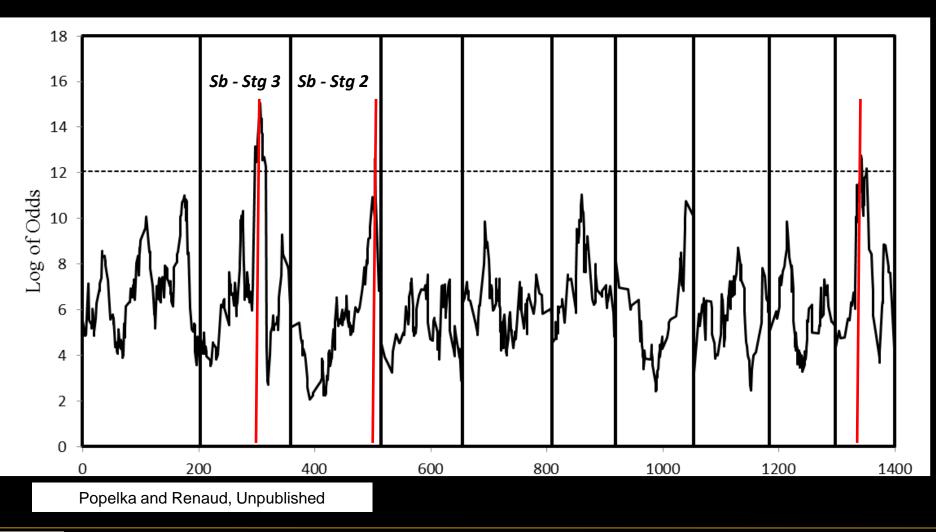
Harrison et al., 2014. Global Change Biology (2014) 20, 867–878, doi: 10.1111/gcb.12381 Cairns et al., 2013. Crop Sci. 53:1335–1346, doi: 10.2135/cropsci2012.09.0545

Late-season drought stress in maize

Heat-stress tolerance in maize

Successful crop improvement efforts for multiple stress tolerance will require a clear understanding of component traits and how they impact plant growth and development.

Harrison et al., 2014. Global Change Biology (2014) 20, 867–878, doi: 10.1111/gcb.12381 Cairns et al., 2013. Crop Sci. 53:1335–1346, doi: 10.2135/cropsci2012.09.0545



Comparative analyses of crops: Deployment of staygreen in sorghum and corn

The "stay-green trait" of sorghum is one of the most important and commercially relevent drought tolerance traits in sorghum, also important in corn.

Genetic analysis of stay-green in corn hybrids

Closing Thoughts ...

- Considerable opportunities remain for identifying and deploying genes that SUSTAINABLY ENHANCE PRODUCTIVITY of corn and other crops in hot and dry environments.
- Continued adaptation of our important food crops to ever-changing production environments will be crucial to ensuring Global Food Security.

Acknowledgements

Purdue University

 Mike Popelka, Alex Renaud, Ryan Gibson, Andy Linvill, and Guri Johal

Cornell University

 Sara Larsson, Cinta Romay, and Edward Buckler

Pioneer Hi-Bred International

Travis Lee

University of Queensland

David Jordan, Emma Mace, Andrew Borrell

These projects were made possible through support from:

- 1. Purdue University
- 2. USDA AFRI-NIFA (No. 2009-65114-05979)
- 3. USAID Heat tolerant maize for Asia

Thank You

