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Why Roots?

* Roots provide
— Minerals
— Nutrients
— Water
— Mechanical Support

— Protection from soil-
borne pathogens
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* Incorporate root growth algorithms to
account for static and dynamic soil properties

* Linkage to soil nutrients and soil fertility
beyond nitrogen, particularly in the context of
climate change.



Grand Challenges

* How completely do gene regulatory networks
need to be mapped in order to understand
the complex integration of environmental

signals and its influence on yield?
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Genetic Variation — Root Architecture

* Genetic variation influences yield and other
parameters in crop models

* Genetic variation that underlies root
architecture both between and within plant
species is important
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M82 and Penn root architecture differ

— M82 =

e enn
(Ron et al., Plant Physiology, 2013)



QTL for yield can be derived from the
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Bottleneck

e Determination in the field of how the root
contributes to vyield
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need to be mapped in order to understand
the complex integration of environmental

signals and its influence on yield?

CLIMATE {\; Root Cell Type
CHANGE Development

/ Genetic Variation:

Yield < > Gene Regulation




Cell Type Development: Adaptation in
Response to the Environment

 Endodermis — salt response (Duan et al. Plant
Cell, 2013)

* Light — epidermis (Savaldi-Goldstein et al.,
Nature 2007)

e Salt transport — cortex —rice (Plett et al., PLoS
ONE, 2010)



M82 and Penn differ in root cell patterning
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PROTOXYLEM
Lignin
Hemicellulose

Cellulose

METAXYLEM

Expansion/ Differentiation
Specification Endoreduplication  (Secondary Cell Wall)



Is there genetic variation in cell type development in
response to a changing environment?
Elevated CO, as a Case Study

Carbon dioxide concentration at Mauna Loa Observatory 515 | g Amblent [CO],
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Bottleneck

* Phenotyping at the level of cell type (image
recognition, sectioning at high-throughput vs.
recalcitrance to imaging with confocal
microscopy)

* Intepreting these results with respect to
physiology and yield



Grand Challenges

* How completely do gene regulatory networks
need to be mapped in order to understand
the complex integration of environmental
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Gene Regulation

* Genes are regulated both spatially AND
temporally

* This regulation in response to the
environment can have different adaptive
outcomes

DNA -> RNA -> Protein



Gene Regulation

* Genes are regulated both spatially AND
temporally

* This regulation in response to the
environment can have different adaptive
outcomes

DNA -> RNA -> Protein
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Transcriptional Regulatory Mechanisms
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overly simplistic
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Secondary wall genes exhibit temporal coexpression
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Bottleneck

* Mapping regulation at cell type resolution in
crop species is challenging — but surmountable

* Modeling the regulation in response to
physiologically relevant stresses and
integrating these datasets is even more
challenging
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