Engineering and physical challenges to engineered crops

KAARE H. JENSEN
DEPARTMENT OF PHYSICS
TECHNICAL UNIVERSITY OF DENMARK

Why study

sugar transport in plants?

www.wikipedia.org

Liquid dynamics in plants

Liquid dynamics in plants

Liquid dynamics in plants

Phloem

- Sugar transport
- Sugar: $1 \mathrm{~kg} /$ day
- Water: $4 \mathrm{~kg} /$ day

Xylem

- Water transport
- Water uptake: $100 \mathrm{~kg} /$ day
- Evaporation: $95 \mathrm{~kg} /$ day
- Photosynthesis: $1 \mathrm{~kg} /$ day
- Phloem: $4 \mathrm{~kg} /$ day
- Cell diameter: $100 \mu \mathrm{~m}$
- Flow velocity: $1 \mathrm{~mm} / \mathrm{s}$
- Reynolds number: 10^{-1}

Physical challenges

Leaf size

Sugar flow

The leaf, an osmotic pump

Jensen, Rio, Hansen, Clanet, Bohr. J.Fluid Mech. 636 (2009)

Sugar speed - scaling analysis

- Leaf dominant $R_{l}=$

$$
u=\frac{2 L_{p} l}{r} \Delta p
$$

- Stem dominant $R_{s}=$

$$
u=\frac{r^{2}}{8 \eta h} \Delta p
$$

Engineering challenge \#1: Measuring phloem flow speed

- Radioactive tracers

Minchin and Troughton
Ann. Rev. Plant Physiol. 31 (1980)

- Nuclear magnetic resonance imaging (NMR)
- Fluorescent dye

Sugar speed - scaling analysis

Jensen, Lee, Bohr, Bruus, Holbrook, Zwieniecki. J. Roy. Soc. Interface (2011)

Limits to Leaf Size

- Energy flux $E=k c u=\frac{2 r^{2} L_{p} l}{r^{3}+16 L_{p} \eta l h} k c \Delta p$.

Upper limit to leaf size

- Large leaf, fast flow
- Cost of maintaining vasculature
$\mathcal{C}=\gamma l \pi r^{2}$

$$
\begin{aligned}
E-\mathcal{C}=0 \Rightarrow & l_{\max }=\frac{1}{16} \frac{2 r^{2} L_{p} k c \Delta p-\gamma r^{3}}{\gamma L_{p} \eta} \frac{1}{h} \\
& l_{\max } \sim \frac{1}{h}
\end{aligned}
$$

Upper limit to leaf size

- Large leaf, fast flow
- Stop growth when close to max output

$$
\begin{aligned}
& E \sim(1-\tau) E_{\max } \quad \tau \ll 1 \\
& l_{\max }=\frac{1}{16} \frac{r^{3}}{\tau L_{p} \eta} \frac{1}{h}
\end{aligned}
$$

$$
l_{\max } \sim \frac{1}{h}
$$

Lower limit to leaf size

- Small leaf, slow flow
- Bulk flow faster than diffusion

Péclet number

$$
\underset{\text { tmber }}{P e}=\frac{u L}{D} \geq 1
$$

$L \quad$ Characteristic cell-to-cell distance ($10-100 \mu \mathrm{~m}$)
D Diffusivity

$$
l_{\min }=\frac{1}{16} \frac{r^{3}}{L_{p} \eta} \frac{1}{\left(h_{\max }-h\right)} \quad h_{\max }=\frac{r^{2} L \Delta p}{8 \eta D} \frac{1}{P e}
$$

Physical challenges

Engineering challenge \#2: Mapping the vascular architecture

Serial light micrographs

Zwieniecki et al.

Plant, Cell \& Environment 29 (2006)

X-Ray Computed tomography

Size of individual phloem tubes

Bamboo

Mullendore et al. Plant Cell 22 (2010) Jensen, Liesche, Bohr, Schulz. Plant, Cell \& Environment 35 (2012) Jensen, Mullendore, Holbrook, Bohr, Knoblauch. Front. Plant Sci. 3 (2012)

Sugar speed depends on the phloem tube size
 $$
u=\frac{2 r^{2} L_{p} l}{r^{3}+16 \eta L_{p} l h} \Delta p
$$

- Fixed leaf and stem length, speed optimal when $R_{s}=R_{l}(M \ddot{u}=1)$

$$
r^{3} \sim L_{p} \eta l h
$$

Jensen, Lee, Bohr, Bruus, Holbrook, Zwieniecki. J. Roy. Soc. Interface (2011)

Phloem Sap Composition

- ~ 20 \% sugars
- sucrose, glucose, fructose, sorbitol, mannitol, raffinose, stachyose...
- ~ 1%
- Proteins, amino acids, hormones, signaling molecules

Engineering challenge \#3: Drawing blood from a plant

- Bleeding
- Aphid stylectomy

Fisher and Frame. Planta 161 (1984)
Munns (Ed.) Plants in Action (2010)

Jensen, Lee, Holbrook, Bush.
J. Roy. Soc. Interface 10 (2013)

Jensen, Savage, Holbrook. J. Roy. Soc. Interface 10 (2013)

Sugar flow in the stem

- Volume flow

$$
Q=\frac{\pi r^{4}}{8} \frac{\Delta p}{L} \frac{1}{\eta(c)}
$$

- Sugar mass flow $J=Q c$

$$
J=\left(\frac{\pi r^{4}}{8} \frac{\Delta p}{L}\right) \frac{c}{\eta(c)}
$$

Sugar mass flow

Sugar mass flow

Nectar Drinking

Hummingbirds

- Surface tension
- Drink through cylindrical tube formed by folding tongue

$$
\left.\begin{array}{r}
\Delta p=\frac{2 \sigma}{a} \\
a
\end{array}\right)\left(\begin{array}{l}
\ell(t)
\end{array}\right.
$$

Kim and Bush. J. Fluid Mech. 705 (2012)

Sugar uptake

$$
\begin{aligned}
J & =c \frac{\pi a^{2} \ell(T)}{T+T_{0}} \\
\pi a^{2} \frac{d \ell}{d t} & =\frac{\pi a^{4}}{8 \eta l} \Delta p \\
\ell & =\left(\frac{a \sigma t}{2 \eta}\right)^{1 / 2} \\
J & \sim \frac{c}{\eta^{1 / 2}}
\end{aligned}
$$

Nectar Drinking

Hummingbirds

- Surface tension
\&

Bees

- Viscous dipping

$$
J \sim \frac{c}{\eta^{1 / n}}
$$

Plant sap flow

Blood flow

Simple Model for Flow Impeded by Concentration

$$
c^{*}=\frac{c}{c_{\mathrm{opt}}} \quad \eta^{*}=\frac{\eta}{\eta\left(c_{\mathrm{opt}}\right)} \quad J^{*}=\frac{J}{J\left(c_{\mathrm{opt}}\right)}
$$

$$
\begin{aligned}
\frac{\partial J^{*}}{\partial c^{*}} & =A-B c^{*} \\
J^{*}(0) & =0 \\
J^{*}(1) & =1
\end{aligned}
$$

$$
\left.\frac{\partial J^{*}}{\partial c^{*}}\right|_{c^{*}=1}=0
$$

Simple Model for Flow Impeded by Concentration

$$
c^{*}=\frac{c}{c_{\mathrm{opt}}} \quad \eta^{*}=\frac{\eta}{\eta\left(c_{\mathrm{opt}}\right)} \quad J^{*}=\frac{J}{J\left(c_{\mathrm{opt}}\right)}
$$

$$
\begin{aligned}
\frac{\partial J^{*}}{\partial c^{*}} & =A-B c^{*} \\
J^{*}(0) & =0 \\
J^{*}(1) & =1
\end{aligned}
$$

$$
\left.\frac{\partial J^{*}}{\partial c^{*}}\right|_{c^{*}=1}=0
$$

Data collapse

Traffic flows

Lighthill and Whitham. Proc. Roy. Soc. A 229 (1955)
Helbing. Rev. Mod. Phys 73 (2001)
Jensen, Lee, Holbrook, Bush. J. Roy. Soc. Interface 10 (2013)

