Engineering and physical challenges to engineered crops

KAARE H. JENSEN DEPARTMENT OF PHYSICS TECHNICAL UNIVERSITY OF DENMARK

Why study sugar transport in plants?

www.wikipedia.org

Liquid dynamics in plants

Liquid dynamics in plants

Liquid dynamics in plants

Phloem

- Sugar transport
 - Sugar: 1 kg/day
 - Water: 4 kg/day

- Cell diameter: 10 µm
- Flow velocity: 100 µm/s
- Reynolds number: 10⁻³

Xylem

- Water transport
 - Water uptake:
 - Evaporation:
 - Photosynthesis:
 - Phloem:

100 kg/day

- 95 kg/day
 - 1 kg/day
 - 4 kg/day
- Cell diameter: 100 μm
- Flow velocity: 1 mm/s
- Reynolds number: 10⁻¹

Physical challenges

Leaf size

The leaf, an osmotic pump

Jensen, Rio, Hansen, Clanet, Bohr. J.Fluid Mech. 636 (2009)

Sugar speed – scaling analysis

• Leaf dominant $R_l = \frac{1}{2\pi r l L_p}$ $u = \frac{2L_p l}{r} \Delta p$

• Stem dominant
$$R_s = \frac{8\eta h}{\pi r^4}$$

$$u = \frac{r^2}{8\eta h} \Delta p$$

0

 Münch number $M\ddot{u} = \frac{\text{STEM}}{\text{TEAE}}$ $\frac{16L_p\eta lh}{r^3}$

Engineering challenge #1: Measuring phloem flow speed

• Radioactive tracers

Minchin and Troughton Ann. Rev. Plant Physiol. **31** (1980)

• Fluorescent dye

Nuclear magnetic resonance imaging (NMR)

Savage, Zwieniecki, Holbrook Plant Physiology **163** (2013)

Windt et al. Plant, Cell & Environment 29 (2006)

Limits to Leaf Size

• Energy flux $E = kcu = \frac{2r^2L_pl}{r^3 + 16L_p\eta lh}kc\Delta p.$

Upper limit to leaf size

 Large leaf, fast flow
 Cost of maintaining vasculature

$$\mathcal{C} = \gamma l \pi r^2$$

$$E - \mathcal{C} = 0 \Rightarrow l_{\max} = \frac{1}{16} \frac{2r^2 L_p kc \Delta p - \gamma r^3}{\gamma L_p \eta} \frac{1}{h}$$
$$\boxed{l_{\max} \sim \frac{1}{h}}$$

Upper limit to leaf size

Lower limit to leaf size

L Characteristic cell-to-cell distance (10-100 μm)*D* Diffusivity

$$l_{\min} = \frac{1}{16} \frac{r^3}{L_p \eta} \frac{1}{(h_{\max} - h)}$$

$$h_{\rm max} = \frac{r^2 L \Delta p}{8\eta D} \frac{1}{Pe}$$

Physical challenges

Engineering challenge #2: Mapping the vascular architecture

Serial light micrographs X-Ray Computed tomography

Zwieniecki *et al.* Plant, Cell & Environment **29** (2006) Brodersen *et al.* New Phytologist **191** (2011) Lee *et al.* Microscopy Res. Tech. **76** (2013)

Size of individual phloem tubes

Black locust

Norway spruce

 $20\,\mu\mathrm{m}$

Squash

Green bean ______

Bamboo

 $10 \mu m$

Castor bean 20µm

Mullendore *et al.* Plant Cell **22** (2010) Jensen, Liesche, Bohr, Schulz. Plant, Cell & Environment **35** (2012) Jensen, Mullendore, Holbrook, Bohr, Knoblauch. Front. Plant Sci. **3** (2012)

Sugar speed depends on the phloem tube size
$$u = \frac{2r^2L_pl}{r^3 + 16\eta L_plh}\Delta p$$

• Fixed leaf and stem length, speed optimal when $R_s = R_l \ (M\ddot{u} = 1)$

$$r^3 \sim L_p \eta lh$$

U

Phloem Sap Composition

- ~ 20 % sugars
 - **sucrose,** glucose, fructose, sorbitol, mannitol, raffinose, stachyose...
- ~1 %
 - Proteins, amino acids, hormones, signaling molecules

Engineering challenge #3: Drawing blood from a plant

- Bleeding
- Aphid stylectomy

Fisher and Frame. Planta **161** (1984) Munns (Ed.) Plants in Action (2010)

Zimmerman. Plant Physiology 32 (1957)

Sugar flow in the stem

• Volume flow

$$Q = \frac{\pi r^4}{8} \frac{\Delta p}{L} \frac{1}{\eta(c)}$$

• Sugar mass flow J = Qc

$$J = \left(\frac{\pi r^4}{8} \frac{\Delta p}{L}\right) \frac{c}{\eta(c)}$$

Sugar mass flow

Sugar mass flow

Nectar Drinking

Hummingbirds

- Surface tension
 - Drink through cylindrical tube formed by folding tongue

$$\Delta p = \frac{2\sigma}{a}$$

$$a = \frac{1}{2}\ell(t)$$

Kim and Bush. J. Fluid Mech. 705 (2012)

Nectar Drinking

Hummingbirds

• Surface tension

Bees

Viscous dipping

Simple Model for Flow Impeded by Concentration

$$c^* = \frac{c}{c_{\text{opt}}}$$
 $\eta^* = \frac{\eta}{\eta(c_{\text{opt}})}$ $J^* = \frac{J}{J(c_{\text{opt}})}$

$$\frac{\partial J^*}{\partial c^*} = A - Bc^*$$

$$J^*(0) = 0$$

 $J^*(1) = 1$

 $\left. \frac{\partial J^*}{\partial c^*} \right|_{c^* = 1} = 0$

Simple Model for Flow Impeded by Concentration

$$c^* = \frac{c}{c_{\text{opt}}}$$
 $\eta^* = \frac{\eta}{\eta(c_{\text{opt}})}$ $J^* = \frac{J}{J(c_{\text{opt}})}$

$$\frac{\partial J^*}{\partial c^*} = A - Bc^*$$

$$J^*(0) = 0$$

 $J^*(1) = 1$

 $\left. \frac{\partial J^*}{\partial c^*} \right|_{c^* = 1} = 0$

Traffic flows

Lighthill and Whitham. Proc. Roy. Soc. A **229** (1955) Helbing. Rev. Mod. Phys **73** (2001) Jensen, Lee, Holbrook, Bush. J. Roy. Soc. Interface **10** (2013)

CARL\$BERGFONDET

THE DANISH COUNCIL FOR INDEPENDENT RESEARCH

