Outline

- Motivation
- Background
- Initial Approach
- Physical Constraint Simulation
- Geometric Constraint Modeling
- Case Studies
- Summary \& Future Research

What is Virtual Assembly ?

The ability to assemble CAD models of parts using a three-dimensional immersive user interface and natural human motions

Virtual Assembly at C6 in VRAC ${ }^{1}$

Motivation

- Accounts for human-interactions in a simulation
- Faster identification of problems in the design
- Faster product development
- Time \& cost savings
- Training assembly workers

- Offline training
- Capture expert assembly methods from experienced workers to guide training
- Collaborative assembly

Sample Assembly Task

Realistic
Representation

Realistic Part Behavior

Tactile Force Feedback Depth Perception

Realistic Part Behavior Collision + Tactile force feedback

Precise Part Manipulation

Dexterous \& Intuitive Manipulation

Simulating Physical Constraints

Previous Research in Virtual Assembly

Positional Constraints (Snapping)

- Kuehne, R. et al., 1995
- Carpenter, I.D. et al., 1996

Geometric Constraints

- Jayaram, S. et al. VADE, 1999
- Marcelino , L. et al., 2003
- Wan, H. et al., MIVAS, 2004
- Jun, Y. et al., 2005

Physical Constraints

- McDermott, S. \& Bras, B., HIDRA, 1999
- Kim, C-E. \& Vance, J.M., NHE, 2003
- Seth, A. \& Vance, J.M., SHARP, 2006

Physical + Geometric Constraints

- Wang, Y. et al., VADE, 2001

SH/RP

System for Haptic Assenbly \& Realistic Prototyping

- Collision detection
- Physical constraints
- Dual-handed haptic interface
- Complex CAD model assembly
- Subassembly support
- Swept volumes
- Network communication
- Portable to different VR Systems

Physics-based Modeling in SHARP (2006)

Voxelized Representation

Voxel, tri-mesh and B-Rep representations of a model

Voxel Model Representation for Pin \& Hole Model

- Limitations
- CAD model approximation using voxels
- Low clearance assembly not possible
- System insensitive to features smaller than voxel size
- Large and small part assembly not possible
- High memory \& computation requirements
- Limited number of parts in the environment

B-Rep Based Physical Constraints

- Precise CAD model representations (B-Rep)
- Collision detection
- Physics-based modeling

Parametric model representations in SHARP

B-Rep based Physical Constraints

- Case 1-Collision Only

- Case 2 - Collision + Physical Constraints
- Successfully simulate realistic part behavior
- Difficult to assemble low clearance parts with very small clearance
- Precise part movements in virtual environment can't be achieved

Physical Constraints during Assembly

Constraint-Based Modeling

- Uses predefined relationships among geometric features
- Limits degree-of-freedom of a part
- Simplifies assembly operation

	Constraint-Based Modeling	Physics-Based Modeling
Low Computation Load	X	
Precise Part Movement	X	
Prevent Part Interpenetration		X
Realistic Behavior Simulation		X

Combining Physical \& Geometric Constraints

- Constraint Module
- Define geometric relationships
- Precise part manipulation
- Voice Module
- Voice recognition
- Feedback
- Hybrid Approach
- Collision detection
- Physical constraints
- Geometric constraint-based modeling

Assembly using Hybrid Approach

Conclusions \& Future Work

- A hybrid approach facilitates realistic simulation of manual assembly tasks in virtual environments
- SHARP system demonstrates
- Realistic part behavior \& interaction
- Highly accurate collision/physics responses
- Runtime geometric and physical constraints
- Access to accurate parametric data in VR

SHARP running in a six-sided CAVE System

- Future Work
- Automatic constraint recognition
- Haptic rendering while preserving simulation accuracy

Acknowledgements

Deere \& Company

D-Cubed, UGS

Virtual Reality Applications Center
 Iowa State University

The research presented here are those of the authors and do not necessarily reflect the views of the National Science Foundation

Thank You !

