INTERACTIVE DEFORMATION THROUGH MESH-FREE STRESS ANALYSIS IN VIRTUAL REALITY

International Design Engineering Conference, 2008

Daniela Faas

REALITY

JIPTUAL

APPLICATIONS

A STATE L

Dr. Judy M. Vance

Department of Mechanical Engineering Virtual Reality Applications Center Iowa State University Program Director Engineering Design and Innovation National Science Foundation

Interactive Shape Manipulation in VR

- Interaction with geometry
- Analysis tied with CAD and shape deformation
- Easier identification of problematic stresses in early design
- Faster product development
- Collaborative design

IOWA STATE UNIVERSITY

Virtual Reality Environment

- Developed for C4 and C6 at VRAC, Iowa State
- Can run on desktop, single wall screen
- Renovated C6:
 - 4000x4000 pixel resolution per wall
 - 48 dual-CPU workstations
 - 24 Sony SRX-S105 digital cinema projectors
- SensAble Technology Phantom haptic device

Image courtesy of the Meta!Blast project, Iowa State University. Funded in part by NSF grants IOB-0219366 and DBI-0520267; ISU College of Liberal Arts and Science."

IVDA Virtual Environments

• Immersive

Desktop

TON

Background

- Yeh and Vance, 1998: linear Taylor series approximations based on pre-computed stress sensitivities and NURBS bounding volume to deform part shape
- Chipperfield et al., 2006 : Mesh-free and PCG re-analysis method to accurately re-compute stress
- Fischer et al., 2007: haptic device implementation

OWA STATE UNIVERSITY

Software

IVDA

- C++ programming language
- VR Juggler software toolkit
- OpenGl
- OpenHaptics toolkit for Phantom haptic device
- OPCODE (Optimized Collision detection)
- Tahoe OpenSource toolkit (<u>http://tahoe.ca.sandia.gov/</u>)
- External:
 - ABAQUS

IOWA STATE UNIVERSITY

Element Definitions

ABAQUS Geometry	Tahoe Geometry	Dimensions	# of Nodes
-	point	1	1
T2D2	line	1	2
CPS4	quadrilateral	2	4, 8
CPS3	triangle	2	3
C3D8	hexahedron	3	8
C3D4	tetrahedron	3	4
C3D6	pentahedron	3	6

DEPARTMENT OF MECHANICAL ENGINEERING

IOWA STATE UNIVERSITY of science and technology

WAL R.

** PARTS

** ASSEMBLY

Element, type=CPS4

1, 1, 15, 123, 57

2, 15, 2, 124, 123

3, 2, 16, 125, 124

*Node

1, 210., 25. 2, 209.020569, 5.50202799 3, 210., -25. ** MATERIALS ** BOUNDARY CONDITIONS

** LOADS

Tahoe geometry file

*dimensions

349 # num nodes

2 # num spatial dimensions

- 1 # num element sets
- # [ID] [nel] [nen]1 297 42
- # num node sets
- # [ID] [nnd]
- 1 112 6
- *elements
- *set
- 297 # num elements
- 4 # num nodes/element
- 1 1 15 123 57
- 2 15 2 124 123
- 3 2 16 125 124
- *nodes
- 349 # num nodes
- 2 # num spatial dimensions
- 1 210 25
- 2 209.021 5.50203
- 3 210 -25

JAL RE

```
Tahoe XML
<nodes>
</dof labels>
      <kinematic BC dof="1" node ID="1" />
      <kinematic BC dof="2" node ID="1" />
      <force BC dof="1" node ID="2" schedule="1" value="1000"/>
    </field>
  </nodes>
  <element list>
    <small strain meshfree field name="displacement">
      <quadrilateral num ip="4"/>
      <solid_element_nodal_output principal_stress="1"/>
      <small strain element block>
        <block ID list>
          <String value="1"/>
        </block ID list>
         <small strain material 2D>
                    <small strain StVenant 2D density="1.0">
             <E and nu Poisson ratio="0.35" Young modulus="1e+08"/>
         </small strain StVenant 2D>
        </small strain material 2D>
      </small_strain_element_block>
<meshfree_support_2D>
         <RKPM>
         <cubic_spline_window support_scaling="1.51"/>
                  </RKPM>
         </meshfree support 2D>
         <meshfree fracture support/>
    </small strain meshfree>
```

OpenGl XML

<model format="XML From ConvertBase"> <geometry num_nodes="349" num_elements="297"> <node id="0">210,25,0</node> <node id="1">209.021,5.50203,0</node> <node id="2">210,-25,0</node> <node id="3">400,-25,0</node> <elem id="0" type="CPS4">0,14,122,56</elem> <elem id="1" type="CPS4">14,1,123,122</elem> <elem id="2" type="CPS4">14,1,123,122</elem> <elem id="2" type="CPS4">14,1,123,122</elem>

IOWA STATE UNIVERSITY

2D Analysis Example

• Stepped beam example

• ABAQUS mesh Low Stress Area High Stress High Stre

WAL RE

IVDA Results

IOWA STATE UNIVERSITY

WAL RI

TIONS

Conclusion

- Investigation of shape through interactive design coupled with mesh-free analysis
- Able to perform mesh-free analysis
 2D, 3D elements
- Able to deform model with stress updates
- Able to assemble parts during deformation
- During assembly operations, collision detection prevents interpenetration

Acknowledgements

Funded by NSF-0084876 and P&G

Andrew Fischer, Lightning Toads Productions LLC Virtual Reality Applications Center Iowa State University

The opinions expressed here are the authors' and do not represent endorsement by the National Science Foundation.

IVDA

Mesh-Free Design In VR

IOWA STATE UNIVERSITY

PILIAL RE

ATIONS C