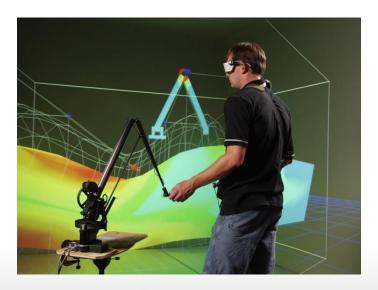


INTERACTIVE MESH-FREE STRESS ANALYSIS FOR MECHANICAL DESIGN ASSEMBLY WITH HAPTICS

International Design Engineering Conference, 2007


Daniela Faas, Dr. Andrew Fischer and Dr. Judy M. Vance*

Department of Mechanical Engineering, Virtual Reality Applications Center, lowa State University *Program Director for Engineering Design Civil, Mechanical, and Manufacturing Innovation Division National Science Foundation

Why Design in VR?

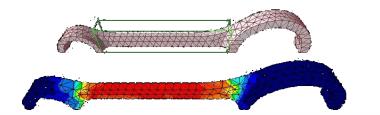
TIONS

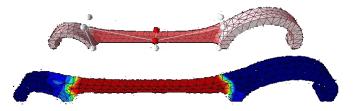
- Time & cost savings.
- Easier identification of problematic stresses in the design.
 - Faster product development.
 - Collaborative Design.

Virtual Reality Environment

- Developed for C4 and C6 at VRAC, Iowa State.
- Renovated C6:

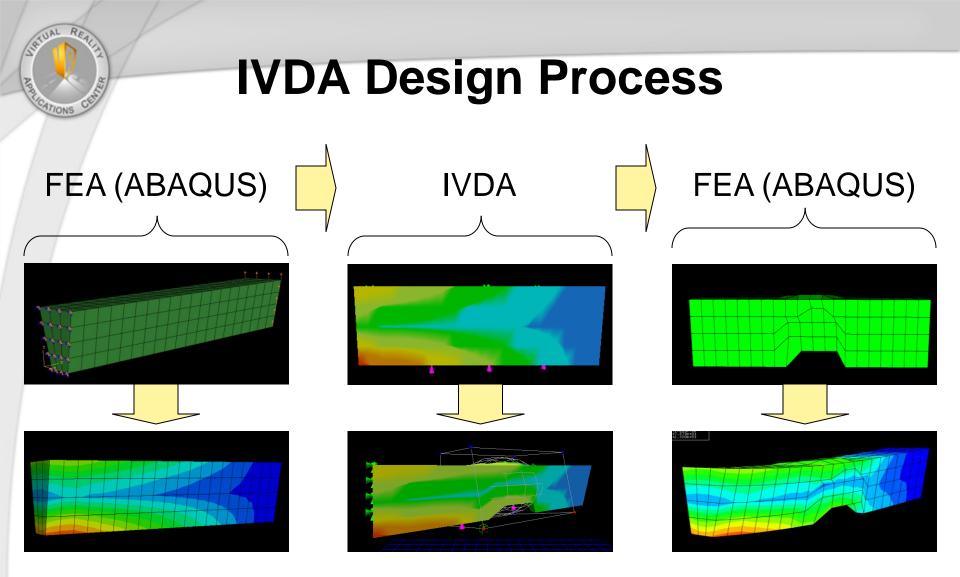
TIONS


- 4000x4000 pixel resolution per wall.
- 48 dual-CPU workstations.
- 24 Sony SRX-S105 digital cinema projectors.
- Phantom Haptic Device



IVDA: Background

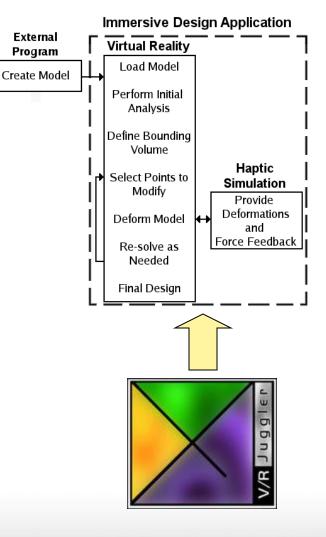
- Yeh and Vance, 1998: linear Taylor series approximations based on pre-computed stress sensitivities and NURBS bounding volume to deform part shape.
- Chipperfield et al., 2006 : PCG re-analysis method to accurately re-compute stress.
- Mesh-free solver to allow for larger design changes



ATIONS

Human Computer Interaction

F SCIENCE AND TECHNOLOG


Optimized design through less iterations

IVDA: Software Used

- C++ programming language.
- VR Juggler software toolkit.
- OpenGl.

CATIONS C

- OpenHaptics toolkit for Phantom haptic device.
- OPCODE (Optimized Collision detection).

Mesh-free analysis

- Tahoe OpenSource toolkit (http://tahoe.ca.sandia.gov/).
- 2D and 3D elements, several material models.
- Reproducing kernel particle method (RKPM):

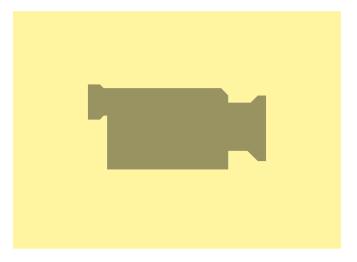
$$u^{h}(\mathbf{x}) = \sum_{I=1}^{N} \Psi_{I}(\mathbf{x}) \quad d_{I} \qquad \qquad \mathbf{\mathcal{E}}^{h}(\mathbf{x}_{L}) = \sum_{I \in G_{L}} \mathbf{B}_{I}(\mathbf{x}_{L}) \mathbf{d}_{I}$$

• $u^h(x) = displacement.$

ATIONS

- $\Psi_L(x)$ =reproducing kernel shape function.
- d_L = vector of displacement coefficients.
- (x_L) = strain at node *L*.
- **B**₁ = smoothed strain gradient matrix.

RTUAL


RA

IVDA

Mesh-Free Design In VR

ARTICATIONS CENT

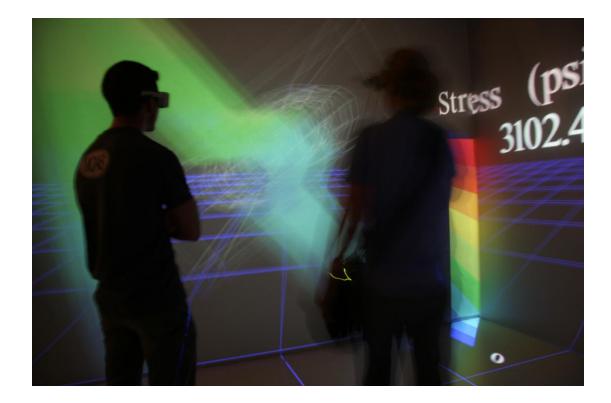
Assembly Operations

Conclusion

Able to perform mesh-free analysis.

ATIONS

- Able to deform model with stress updates.
- Able to assemble parts during deformation.
- During assembly operations, deformation cannot cause parts to intersect.
 - Limitation: 10% tolerance for fits.
- Optimization of shape through interactive design coupled with mesh-free analysis.


Acknowledgements

ATIONS

- Andrew Fischer.
- Funded by Proctor and Gamble.
- Virtual Reality Applications Center.
 - Iowa State University.

Questions?

