Virtual Reality as a Human Computer Interface to Mechanical Design

Judy M. Vance Mechanical Engineering Department Virtual Reality Applications Center Iowa State University Ames, IA

Virtual Reality Technology

Position tracking Stereo viewing Multisensory stimulation

Position Tracking

Head tracking

Used to change the visual display to correspond to the orientation of the person in the environment

Position tracked input devices

Allow the user to reach out and grab computer generated objects and move them around in the computer environment

IOWA STATE UNIVERSITY Object Manipulation

User triggers the selection process

OF SCIENCE AND TECHNOLOGY

Object is released

Facilities

C4: MD Flex[™] (1117 Black Engr)

- 12' x 12' x 9' facility
- 3 walls and floor stereo projection
- Outer walls can fold out to provide a 36' x 9' viewing surface
- SGI ONYX with 3 Infinite Reality graphics pipes and 16 R10000 processors
- Nuvision and StereoGraphics active stereo glasses
- Ascension Technology Wireless MotionStar tracking system
- Barco projectors

The C6 (Howe Hall Atrium)

Entire facility is 3 stories high

Occupies the atrium of Howe Hall

OF SCIENCE AND TECHNOLOGY

Construction of the C6

www.vrac.iastate.edu/new/c6page.html

OF SCIENCE AND TECHNOLOGY

C6: 6 walls, wireless tracking

- 10' x 10' x 10' facility
- 4 walls, floor, and ceiling stereo projection
- Surround sound audio system
- SGI ONYX2 Reality Monster
 - 6 Infinite Reality2 graphic pipes
 - 4 R12000 processors @ 400 MHz

56MB texture memory, 12Gb RAM

- Nuvision and StereoGraphics active stereo glasses
- Ascension Technology Wireless MotionStar tracking system
- Barco Projectors

Hydraulic Hose Routing in Virtual Reality

GOAL: To develop a virtual reality design tool that allows designers to accurately route hydraulic hoses early in the product design process.

OF SCIENCE AND TECHNOLOGY

The Hose Routing Problem

- Difficult to predict installed hose shape
 - Hoses vary in flexibility
 - Installation affects hose shape
 - Operation affects hose shape
- Multiple hoses are needed for many products
- Hose wear occurs when hoses rub against other objects or other hoses

Current State of the Art

Hoses added to CAD model

- ProPiping
- Adams Hose Routing Module

or

"Enough room" for hoses is left in product design

or

Expert hose designers take their "best guess" on hose shape for the stiffest or most critical hoses

JACK[™] Human figure modeling software

Advantages

- Loads CAD geometry
- View geometry in the HMD through JACK's eyes
- Position tracking
- JackScript (Python + JACK)

VRHose Hardware

- Virtual Research HMD
- Ascension Flock of Birds Trackers

Department of

Mechanical Engineering

- Fakespace Pinch Gloves
- Switch Box for menus
- SGI ONYX2 or Octane

VRHose Program

- Series of JackScript code classes
- Geometry loaded from existing CAD models
- Custom menu system
- Analyzes hose shape with ADAMS
- Load and Save hose routes

Hose Testing

INTRON

1

Torsion

Bending

Hose Modeling

- Hose points
- Clamping constraints
- Physical hose properties
 - Weight per unit length
 - Inside diameter
 - Outside diameter
 - Axial stiffness
 - Torsional stiffness
 - Bending stiffness

Initial hose points

Calculated hose shape Department of Mechanical Engineering

OF SCIENCE AND TECHNOLOGY

Hose Routing Steps

- 5. Observe B-spline interpolation of hose path
- 6. Modify "hose points" as needed
- 7. Analyze hose path to obtain actual hose route
- 8. Repeat 6 and 7 until satisfied
- 9. Save final hose route

- 2. Select hose type and size from menu
- 3. Choose and place connecting hardware
 - Specify hose path with "hose points"

Results

More Information

www.vrac.iastate.edu www.vrac.iastate.edu/~jmvance www.vrjuggler.org

C4 Public Tours: 3rd Friday of every month Call: 294-3092 to make a reservation

