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Abstract

Gas-phase velocity fluctuations in fixed particle beds and freely evolving

suspensions are quantified using particle-resolved direct numerical simulation

(PR-DNS). The flow regime corresponds to homogeneous gas-solid systems

typically encountered in fluidized bed risers, with high solid to gas density

ratio and particle diameter being greater than the dissipative length scales.

The contribution of turbulent and pseudo-turbulent fluctuations to the level

of gas-phase velocity fluctuations is quantified in flow past fixed particle

assemblies. The simulations are then extended to freely evolving suspensions

with elastic and inelastic collisions. It is found that for the parameter values

considered here (solid volume fraction 0.1 and 0.2, particle to gas density

ratio 100 and 1000, and coefficient of restitution in the range 0.7-1.0) the

level of gas-phase velocity fluctuations in freely evolving suspensions differs

by only 10% from the value for a fixed bed at the same solid volume fraction φ
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and mean slip Reynolds number Rem. Quantification of the Reynolds stress

indicates that the second moments of the gas-phase velocity fluctuations

are anisotropic, corresponding to unidirectional axisymmetric fluctuations.

The anisotropy increases with Rem to a maximum that occurs in the range

10 ≤ Rem ≤ 40, and then decreases. In addition, the anisotropy decreases

with increasing solid volume fraction for all cases considered in this study.

The Reynolds stress is decomposed into isotropic and deviatoric parts, and

their dependence on φ and Rem is quantified and explained.

Keywords: Fluidized bed, Fixed bed, Freely evolving suspension,

Pseudo-turbulent, Gas-phase velocity fluctuations, Reynolds stress

1. Introduction

Gas-solid flows are commonly found in industrial applications such as

fluidized-bed combustion, fluid catalytic cracking, coal gasification processes,

and biomass energy generation (Fan et al., 2004). The interaction of gas-

phase velocity fluctuations with solid particles results in flow structures,

such as the core annular structure in circulating fluidized beds. In mod-

eling of dilute suspensions based on averaged equations, Louge et al. (1991)

and Bolio et al. (1995) have identified both gas-phase velocity fluctuations

and particle-particle interaction as key mechanisms that must be accurately

modeled in order to capture this phenomenon. In addition, gas-phase ve-

locity fluctuations enhance the heat transfer and mixing of chemical species

inside the fluidized bed. This motivates the current study that is focused on

understanding the origin and mechanisms responsible for the generation of

gas-phase velocity fluctuations in fluidized beds is essential.
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In industrial applications of particulate flows, particles are inertial (ρ(p)/ρ(f) ∼
1000) with diameter dp ranging from 50 to 500µm. In these flows, the par-

ticles are usually larger than the length scale of dissipative flow motions η.

The interaction of large particles with carrier flow generates pseudo-turbulent

gas-phase velocity fluctuations due to the mean slip velocity (Tenneti et al.,

2012). The mean slip velocity is an important parameter because it strongly

influences both the asymmetric pressure distribution around particles and the

formation of boundary layers on particle surfaces. The pressure asymmetry

results in the formation of wake structures behind the spheres, which are con-

vected downstream by the carrier flow and contribute to gas-phase velocity

fluctuations. The mean slip velocity also generates large velocity gradients

in particle interstices. These local velocity gradients modify the dissipation

of gas-phase velocity fluctuations, which are no longer characterized by the

Kolmogorov length scale, unlike in the case of single-phase turbulence. These

mechanisms determine the level of gas-phase velocity fluctuations k(f) in a

particle-laden flow. While these phenomena have been studied for the case

of sub-Kolmogorov particles (dp < η) (see Balachandar and Eaton (2010),

and references therein), they have not been comprehensively studied for large

particles (dp > η). The level of k(f) consists of both pre-existing turbulent

fluctuations in the carrier flow and pseudo-turbulent gas-phase velocity fluc-

tuations due to the presence of particles. Since the mechanisms for the gen-

eration and dissipation of these fluctuations are different, it is useful from a

modeling viewpoint to distinguish the pseudo-turbulent from the pre-existing

turbulent velocity fluctuations in gas-solid suspensions.

Moran and Glicksman (2003) observed experimentally that the presence
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of particles in circulating fluidized beds produces high levels of velocity fluc-

tuations at dilute solid volume fractions that is significant compared to gas-

phase turbulent velocity fluctuations in the absence of particles. The hot wire

anemometer technique used by Moran and Glicksman (2003) cannot distin-

guish the directional components of the velocity fluctuations. Furthermore,

it is an intrusive measurement technique, as is the specially designed pitot

probe used by Doig and Roper (1967). On the other hand, non-intrusive

methods of laser Doppler anemometry (LDA) (Lee and Durst, 1982; Rogers

and Eaton, 1991; Sato et al., 1996), and particle image velocimetry (PIV)

(Oakley et al., 1997; Kiger and Pan, 2000) are limited to very dilute systems

due to the difficulties with optical access in denser gas-solid systems.

An alternative approach to investigate gas-phase velocity fluctuations in

gas-solid flows is to use particle-resolved direct numerical simulation (PR-

DNS) that provides detailed spatial and temporal information of the flow

field. For gas-solid flows with particle diameter greater than the Kolmogorov

length scale, PR-DNS is necessary to resolve all the scales of the carrier flow

turbulence and the flow scales introduced by the presence of particles. PR-

DNS has been used to study the interaction of decaying isotropic turbulence

with a single particle (Bagchi and Balachandar, 2004; Burton and Eaton,

2005) or a collection of particles (Zhang and Prosperetti, 2005), particle-laden

turbulent channel flow (Uhlmann, 2008), gas-solid flows with upstream tur-

bulence (Xu and Subramaniam, 2010), as well as statistically homogeneous

pseudo-turbulent gas-solid flows with a mean slip velocity (Tenneti et al.,

2012).

In the current study we perform PR-DNS of homogeneous gas-solid sys-
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tems with a finite mean slip velocity in fixed particle assemblies and freely

evolving suspensions. The fixed particle assembly simulations are used to

determine the relative contribution of turbulent and pseudo-turbulent gas-

phase velocity fluctuations to the steady level of k(f). In these simulations

the particles are held stationary and a steady flow is established by im-

posing a mean pressure gradient that corresponds to the desired flow rate.

Use of the fixed-bed simulation methodology for gas-solid flows is justified if

the configuration of the particles changes very slowly compared to the time

it takes to attain mean momentum balance. Xu and Subramaniam (2010)

and Tenneti et al. (2012) argued that the timescale over which the particle

configuration changes depends on ReT = dpT
1/2/ν(f), which is the Reynolds

number based on the particle fluctuating velocity characterized by the par-

ticle granular temperature T . Since both experiment (Cocco et al., 2010)

and PR-DNS (Tenneti et al., 2010) of gas-solid flows show that ReT is low

for high Stokes number suspensions, fixed-particle assemblies have been used

as a good approximation to freely evolving suspensions. However, a direct

comparison between fixed and freely evolving suspensions at the same solid

volume fraction and Reynolds number has not been reported to the best of

our knowledge.

In real particle-laden flows, the particles move and collide freely. Numeri-

cal simulations of freely evolving suspensions have been performed elsewhere

(Yin and Koch, 2007) to study the sedimentation of particles under gravity in

the presence of fluid. In these studies the steady mean flow Reynolds number

attains a unique value that depends on problem parameters (gas and particle

densities, solid volume fraction, gravitational acceleration, etc.). Therefore,
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in sedimenting suspensions it is not possible to simulate arbitrary Reynolds

numbers. However, the simulation of freely evolving suspensions in an ac-

celerating frame of reference (Tenneti et al., 2010) enables us to simulate

suspensions at arbitrary Reynolds numbers while maintaining other param-

eters at fixed values. The results are then compared over a wide range of

problem parameters with data from fixed particle assemblies to gain insight

into the effect of freely moving particles on gas-phase velocity fluctuations.

In addition, we verify the validity of the fixed bed approximation to freely

evolving suspensions of high Stokes number particles.

Although PR-DNS is an appropriate tool to investigate particle-laden

flows with dp > η, they are prohibitively expensive for device-scale calcu-

lations. Device-scale calculations require CFD simulations of multiphase

flows (Halvorsen et al., 2003; Sun et al., 2007) that solve averaged equa-

tions for mass, momentum and energy with coupling terms corresponding

to interphase interactions. The closure of these equations requires model-

ing of interphase terms and second moments of velocity fluctuations in both

phases. In early modeling attempts (Sinclair and Jackson, 1989; Ding and

Gidaspow, 1990; Pita and Sundaresan, 1993) gas-phase velocity fluctuations

were usually neglected. The main focus was on the interaction of gas and

solid phases through their mean velocities, and the effect of fluctuating ve-

locities in the solid phase that contribute to the granular temperature. The

neglect of gas-phase velocity fluctuations that were not previously quanti-

fied led to considerable uncertainty in the predictive capabilities of models.

Experimental evidence of the importance of gas-phase velocity fluctuations

resulted in the emergence of a new class of models in which the effect of gas-
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phase velocity fluctuations was also considered. Among the first to model

the effect of gas-phase velocity fluctuations were the one-equation model of

Louge et al. (1991) and hte two-equation model of Bolio et al. (1995) for di-

lute systems of large particles. Later on, more sophisticated models such as

the four-equation k-ε model of Simonin (1996) were proposed which are valid

for a wide range of volume fraction and Reynolds number. These models are

basically extended versions of single-phase k-ε models modified to be used in

gas-solid flow, and their validity in this regime of gas-solid flow has not been

tested. However, PR-DNS of canonical problems plays a key role in shed-

ding light on the physics governing gas-solid flows. The PR-DNS findings

can then be used to propose accurate models. In this regard, Tenneti et al.

(2012) quantified the level of gas-phase velocity fluctuations from PR-DNS

over a wide range of φ and Rem and proposed an eddy viscosity model.

Recent PR-DNS of gas-solid flows (Uhlmann, 2008; Xu and Subrama-

niam, 2010; Tenneti et al., 2012) indicate that the gas-phase Reynolds stress

is strongly anisotropic. In industrial gas-solid flows, the anisotropy of the ve-

locity fluctuations results in anisotropic heat and scalar transport even in sta-

tistically homogeneous suspensions. Therefore, the importance of anisotropy

motivates us to quantify the level of anisotropy in gas-solid flows extracted

from our PR-DNS data. These anisotropy results in conjunction with the

model already proposed for gas-phase velocity fluctuations (Tenneti et al.,

2012) can be used to develop a model for the gas-phase Reynolds stress in

gas-solid flows.

The rest of the paper reads as follows. In Section 2 the numerical method

is described. In Section 3 the interaction of initial turbulence and particle
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assemblies in homogeneous systems is addressed. In Section 4 the simulations

of freely evolving suspensions are presented. In Section 5 the anisotropy of

the Reynolds stress is examined, followed by conclusions in Section 6.

2. Numerical method

Numerical investigation of ga-solid flow with particles larger than the

Kolmogorov length scale requires PR-DNS. Several numerical methods have

been developed for PR-DNS of gas-solid suspensions (Johnson and Tezduyar,

1997; Peskin, 2002; Prosperetti and Oguz, 2001). In this study, we employ the

Particle-Resolved Uncontaminated Fluid Reconcilable Immersed Boundary

Method (PUReIBM) introduced by Tenneti et al. (2010), which has been

successfully used to extract computational drag laws (Tenneti et al., 2011),

and quantify gas-phase velocity fluctuations (Tenneti et al., 2012).

PUReIBM utilizes a regular Cartesian mesh wherein the particle surface is

described by a discrete number of points. No-slip and no-penetration bound-

ary conditions (BC) are implemented at these points by adding a forcing

term to the momentum equation and generating a fictitious flow inside each

particle such that the relative velocity of the fluid comes to rest with respect

to the particle motion. The instantaneous mass and momentum equations

that are solved in PUReIBM are

∇ · u = 0, (1)

and
∂u

∂t
+ S = − 1

ρ(f)
g + ν(f)∇2u+

1

ρ(f)
f −Af , (2)

respectively, where u is the instantaneous velocity, S = ∇ · (uu) is the con-

vective term in conservative form, g is the pressure gradient, and f is the
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immersed boundary (IB) forcing term that accounts for the presence of par-

ticles by ensuring the no-slip and no-penetration BCs at the particle-fluid

interface. The IB forcing in PUReIBM is non-zero only inside the solid par-

ticle. Thus, the equations in the fluid phase are unmodified and the solution

in the fluid phase is not contaminated due to the IB forcing. The simulation

of freely evolving suspension in PUReIBM is carried out in an accelerating

frame of reference that moves with the mean velocity of particles. In Eq. 2

Af accounts for the acceleration of the frame of reference (Tenneti et al.,

2010).

The computation of IB forcing in PUReIBM is similar to the direct forcing

method proposed by Yusof (1996). The IB forcing at the (n+1)th time-step

is specified to cancel the remaining terms in the momentum conservation and

force the velocity to its desired value ud
i at that location:

fn+1 = ρ(f)
ud − un

∆t
+ ρ(f)Sn + gn − µ(f)∇2un + ρ(f)Af , (3)

The governing equations in PUReIBM are solved by imposing periodic BCs

on fluctuating variables at the boundaries of the computational domain. The

velocity field is decomposed into a spatially uniform mean flow that is purely

time-dependent and a fluctuating velocity field u′ that is periodic, i.e.,

u(x, t) = 〈u〉V (t) + u′(x, t), (4)

where the volumetric mean velocity

〈u〉V (t) =
1

V

∫

V

u(x, t)dv, (5)

is obtained by averaging the velocity field over the entire computational do-

main. Similar decompositions can be written for the non-linear term S,

9



pressure gradient g, and immersed boundary forcing f terms as well. Sub-

stituting the above decompositions in Eqs. 1 and 2, followed by averaging

over the entire computational domain yields the volume-averaged mass and

momentum conservation equations. Since the volumetric means are indepen-

dent of spatial location, mean mass conservation is trivially satisfied. The

mean momentum balance in the whole domain is

ρ(f)
d 〈u〉V
dt

= −〈g〉V + 〈f〉V − ρ(f)Af , (6)

where the volume integrals of convective and diffusive terms are zero because

of periodic BCs. The mean IB forcing term 〈f〉 is computed by volume-

averaging the IB force specified in Eq. 3 over the region V. The mean pressure

gradient 〈g〉 is computed such that we obtain the desired flow rate.

Evolution equations for the fluctuating variables are derived by subtract-

ing Eq. 6 from Eq. 2. Due to the periodicity of the fluctuating fields, a

pseudo-spectral method is used with Crank-Nicolson scheme for the viscous

terms and an Adams-Bashforth scheme for the convective terms. A fractional

time-stepping method based on Kim and Moin’s approach (Kim and Moin,

1985) is used to advance the fluctuating velocities in time. The principal

advantage of the PUReIBM approach is that it enables the use of regular

Cartesian grids to solve for flow past arbitrarily shaped moving bodies with-

out the need for costly remeshing. In addition, the regularity of the mesh

simplifies the parallelization of PUReIBM.

The salient feature of PUReIBM that distinguishes it from other IB meth-

ods is that the IB forcing in PUReIBM is non-zero only inside the solid

phase and the fluid-phase is uncontaminated by the IB forcing. Therefore

the velocity and pressure in the fluid phase is a solution to the unmodified
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Navier-Stokes equation. In addition, the hydrodynamic force experienced by

a particle is computed directly from the stress tensor at the particle surface

that is obtained from this uncontaminated fluid flow solution. This feature

enables us to directly compare the DNS solution with any random-field the-

ory of multiphase flow (Garg et al., 2011; Tenneti et al., 2011).

Garg et al. (2011) and Tenneti et al. (2011) have shown that PUReIBM is

numerically convergent and accurate for DNS of gas-solid flows. The method

is validated through a comprehensive set of tests: (i) flow past an isolated

sphere (ii) Stokes flow past SC and FCC arrangements (ranging from dilute

to close-packed limit) compared with the boundary-integral method of Zick

and Homsy (1982), (iii) Stokes flow past random arrays of monodisperse

spheres compared with LBM simulations of van der Hoef et al. (2005), (iv)

moderate to high Reynolds numbers (Rem = 300) in SC and FCC arrange-

ments compared with LBM simulations of Hill et al. (2001), and (v) high

Reynolds number flow past random arrays of monodisperse spheres with

ANSYS–FLUENT CFD package.

3. Gas-phase velocity fluctuations in steady flow past fixed particle

assemblies

While the evolution of gas-phase velocity fluctuations due to particles has

been studied for zero mean slip (Zhang and Prosperetti, 2005), the mean slip

velocity between the phases is non-zero in fluidized beds. PR-DNS of Tenneti

et al. (2012) showed the existence of significant gas-phase velocity fluctua-

tions in homogeneous gas-solid systems initialized with a uniform flow under

an imposed mean pressure gradient. However, the study did not address the
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Figure 1: Evolution of k(f) normalized with mean flow energy. Symbols (▽) correspond to

the simulation initialized with an isotropic turbulence. Symbols (△) represent simulation

of perturbed velocity field. Symbol (©) shows the steady value of pseudo-turbulence

simulation. Symbol (�) shows the value from the correlation 10.

influence of initial turbulence on k(f). Xu and Subramaniam (2010) studied

the interaction of a turbulent upstream flow with a fixed particle assembly

in an attempt to reproduce the experimental findings of Moran and Glicks-

man (2003). In their study the upstream flow is initialized with isotropic

turbulence and drawn through a uniform configuration of fixed particles by

imposing a mean constant pressure gradient. This flow is inhomogeneous in

the mean flow direction but gas-phase velocity fluctuations reach a constant

value within three particle diameters of entering the bed. The significant re-

sult of this study is the enhancement of turbulence as it interacts with solid

spheres of the fixed bed.

In the current study, we simulate initially turbulent flow in fixed particle

assemblies to quantify the relative magnitude of gas-phase velocity fluctua-

tions arising from turbulent and pseudo-turbulent sources. A uniform distri-
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bution of non-overlapping spheres is generated using the Matérn hard-core

point process (Stoyan et al., 1995). This is essentially a Poisson point process

for particle centers from which overlapping spheres have been removed using

an approach called dependent thinning. In our study, the particle configura-

tions correspond exactly to the uniform distribution in Xu and Subramaniam

(2010). To address the level of turbulent and pseudo-turbulent gas-phase ve-

locity fluctuations we consider three types of simulations as follows:

1. Case I initialized with a non-turbulent uniform laminar flow

2. Case II initialized with an isotropic turbulent flow

3. Case III initialized with the steady solution of Case I to which the

initial isotropic turbulence of Case II is added

The simulations start by imposing a mean pressure gradient along the mean

flow such that the Reynolds number reaches the desired value. The Reynolds

number based on the mean slip velocity is defined as

Rem =
| 〈W〉 | (1− φ)dp

ν(f)
, (7)

with 〈W〉 being the mean slip velocity. The mean slip Reynolds number is 50

for all cases. Detailed information of flow parameters is provided in Table 1.

The energy in the gas-phase velocity fluctuations k(f) is computed by

ensemble-averaging over multiple independent realizations corresponding to

different particle configurations:

k(f) =
1

M

M∑

µ=1

k(f)
µ , (8)
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where the number of realizations M is 4 for all cases. The gas-phase fluctu-

ating velocity energy of each realization k
(f)
µ is

k(f)
µ =

1

2V (f)

∫

V
(f)
µ

u
′′(f)
i u

′′(f)
i dV, (9)

with u
′′(f)
i being the gas-phase velocity fluctuations defined as u

(f)
i −

〈

u
(f)
i

〉

,

V(f)
µ being the region occupied by gas-phase in µth realization, and V (f) is

the gas-phase volume.

The first verification we perform is comparing the level of pseudo-turbulent

gas-phase velocity fluctuations with a correlation to PR-DNS data for slightly

higher volume fractions. Using PR-DNS in the range 0.1 ≤ φ ≤ 0.5 and

0.01 ≤ Rem ≤ 300, Tenneti et al. (2012) showed that the energy in pseudo-

turbulent velocity fluctuations is characterized by the following correlation

k(f)

E(f)
= 2φ+ 2.5φ(1− φ)3exp

(
−φRe1/2m

)
, (10)

with E(f) being the mean flow energy defined as 〈W〉 · 〈W〉 /2. Although

there is no simulation data at φ = 0.05 in that work, Fig. 1 shows that the

value obtained from Eq. 10 corresponding to φ = 0.05 for Case I is 0.18,

which is in good agreement (less than 10% difference) with the steady value

of k(f) from our simulation.

Table 1: The numerical and physical parameters of turbulent/pseudo-turbulent simula-

tions.

φ Rem Reλ dp/η dp/∆x L/dp
Case I: pseudo-turbulent 0.05 50 − − 20 12.5

Case II: turbulent 0.05 50 12 5 20 12.5

Case III: Case Is.s.+ iso. turb. 0.05 50 − − 20 12.5
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The initial isotropic turbulence in Case II is generated by the method de-

scribed by Rogallo (1981) for a Taylor microscale turbulent Reynolds number

Reλ of 12 with the energy spectrum function given by Pope (2000). The cor-

responding Kolmogorov length scale is selected such that the ratio dp/η is 5.

Fig. 1 also indicates that for Case II, the level of k(f) starts from the specified

initial isotropic turbulence level and increases to the steady state pseudo-

turbulent value. The data reveals that the velocity fluctuations arising from

the particles in gas-phase are much higher than the turbulent velocity fluctu-

ations for Reλ = 12, and the principal contribution to the gas-phase velocity

fluctuations is the pseudo-turbulent part.

Since in this study, the configurations and simulation parameters are

the same as those chosen by Xu and Subramaniam (2010), we can compare

the k(f) between homogeneous simulations of PUReIBM and inflow/outflow

simulations of Xu and Subramaniam (2010). In their study, the flow is in-

homogeneous along the flow direction and k(f) is reported along the mean

flow direction. The level of k(f) increases from the beginning of the bed and

represents a 100% increase from the entrance of particle bed and reaches a

constant value after an entrance length of 3dp. Our homogeneous simulation

results are similar for Case II where normalized k(f) starts from an initial

value of 0.1 and reaches approximately twice its initial value (0.19) at steady

state. This indicates that the enhancement observed by Xu and Subrama-

niam (2010) is mainly due to the pseudo-turbulent velocity fluctuations, and

the steady state value can be characterized by flow parameters φ and Rem

as Eq. 10.

From these results, it is clear that the turbulent velocity fluctuations will
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Figure 2: The equivalent Taylor microscale turbulent Reynolds number which generates

the same pseudo-turbulent level of velocity fluctuations observed in gas-solid flows. The

figure corresponds to dp/η = 5.

only be important if they are of the same level as, or higher than, the pseudo-

turbulent velocity fluctuations. Therefore, it is interesting to determine the

Taylor microscale Reynolds number that generates a level of initial turbu-

lence comparable to the steady value of k(f), and to ascertain its scaling with

φ, dp/η, and Rem. The equivalent Reλ is determined by using the isotropic

turbulence scaling relations in single-phase turbulence (Pope, 2000), and em-

ploying the relation between ReL and Reλ, which is Reλ = (20ReL/3)
1/2. In

this context, the turbulent Reynolds number ReL is related to the large

eddy and dissipative length scales by the expressions ReL = k1/2L/ν and

Re
−3/4
L = η/L, respectively. The elimination of large eddy length scale L

between these relations, and substitution of single-phase k by the pseudo-

turbulent level of k(f) leads to an expression for ReL as

Re
1/2
L =

k(f)η2

ν2
. (11)

The use of Eq. 10 for the level of k(f) in above equation and expressing
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ReL in terms of Reλ, a final expression for the equivalent Taylor microscale

turbulent Reynolds number is obtained as

Reλ =

√

20

3

{
φ+ 1.25φ(1− φ)3exp

(
−φRe1/2m

)}
(

η

dp

)2(
Rem
1− φ

)2

. (12)

This expression shows that the equivalent Reλ is a function of solid volume

fraction, mean slip Reynolds number, and particle diameter to Kolmogorov

length scale ratio. The dependence of equivalent Reλ on φ is through the

expression for the pseudo-turbulent gas-phase velocity fluctuations k(f)/E(f)

in Eq. 10. Since this k(f) increases with volume fraction (Tenneti et al., 2012),

the equivalent Reλ also increases. In addition, the quadratic dependence of

Reλ on Rem indicates that the large eddies associated with the flow structures

due to the presence of particles contribute increasingly to the equivalent

isotropic Reλ. The dependency of Reλ on η/dp is also represented in Eq. 12

by a quadratic term. To observe the influence of dp/η, we introduce the

definition of the Kolmogorov length scale η = (ν3/ε)1/4 to obtain dp/η =

(εd4p/ν
3)1/4, which shows that increase of dp/η causes the dissipation of kinetic

energy ε to increase dramatically. By maintaining other parameters constant,

the large eddy length scale decreases since it is defined as L = k3/2/ε. Thus,

the decrease of L results in the attenuation of the turbulent Reynolds number

ReL, which implies a lower equivalent Reλ. To gain insight into the behavior

of equivalent Reλ, a contour plot of Reλ for dp/η = 5 is presented in Fig. 2.

This figure reveals that for relatively dense flows at moderate or high mean

slip Reynolds numbers, the velocity fluctuations induced by particles are

equivalent to high levels of single phase turbulence. Since most PR-DNS of

isotropic turbulence are limited to Reλ ≈ 30 (Burton and Eaton, 2005; Zhang

and Prosperetti, 2005), this indicates that even a moderate value of mean
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slip velocity can easily generate high pseudo-turbulent velocity fluctuations

compared to the level of turbulent fluctuations (initial or upstream) in the

gas phase.

Case III is basically used to examine the relaxation of turbulence in

particle-laden flows. The evolution of k(f) for Case III in Fig. 1 shows that

the excess amount of k(f) decays and the pseudo-turbulent steady state level

of k(f) is recovered. These results showing both attenuation and enhance-

ment of turbulence depending on the initial level of velocity fluctuations

indicate that for this choice of φ and Rem, initial turbulent motions in the

gas-phase do not influence the steady value of k(f), which corresponds to the

pseudo-turbulent fluctuations arising from the interaction of particles with

the mean flow. The contour plot in Fig. 2 is useful in quantifying when ini-

tial turbulence or the pseudo-turbulent contribution dominates the steady

value of k(f). Since the mechanism for generation and dissipation of these

contributions to k(f) are different, this provides useful information for the

development of predictive multiphase turbulence models in this regime of

gas-solid flow. Although the pseudo-turbulent contribution to k(f) studied

in this section is comprehensively quantified by Tenneti et al. (2012), the

influence of particle movements on k(f) is neglected. Thus, in the following

section we study the effect of particle motion on the kinetic energy of the

carrier flow.

4. Gas-phase velocity fluctuations in freely evolving suspensions

Although fixed beds are good approximations to the particle-laden flows

at high particle Stokes number, in reality each sphere moves with an acceler-
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ation arising from hydrodynamic and collisional forces. Simulation of freely

evolving suspensions enables us to study the effect of physical parameters

such as solid to gas density ratio and coefficient of restitution, in addition

to solid volume fraction and Reynolds number that are used to characterize

fixed bed simulations. In freely evolving suspensions, particles move un-

der the influence of hydrodynamic and collisional forces. In PUReIBM the

particles are represented in a Lagrangian frame of reference at time t by

{X(i)(t), V(i)(t) i = 1...Np} with X(i)(t) and V(i)(t) being the position and

velocity of ith particle respectively, and Np being the total number of parti-

cles. The position and translational velocity of ith particle evolve according

to Newton’s second law as

dX(i)(t)

dt
= V(i)(t), (13)

m
V(i)(t)

dt
= B+ F

(i)
h (t) +

Np∑

j=1
j 6=i

F
(c)
ij (t) (14)

where B is any external body force, F
(i)
h is the hydrodynamic force (calcu-

lated from the velocity and pressure fields at the particle surface) and F
(c)
ij is

the contact force on the ith particle as a result of collision with jth particle.

Particle-particle interactions are treated using soft-sphere collisions based on

a linear spring-dashpot contact mechanics model that was originally proposed

by Cundall and Strack (1979) (details are given in Appendix A). The hy-

drodynamic and contact forces computed at each time step are then used to

evolve the position and translational velocity of particles by means of Eqs. 13

and 14, respectively.

The formulation of PUReIBM in an accelerating frame of reference en-
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Figure 3: Evolution of k(f) normalized with mean flow energy for elastic particles with

different φ and ρ(p)/ρ(f).

ables the simulation of not just sedimenting suspensions, but arbitrary mean

slip values while maintaining average particle motion at rest in the accel-

erating frame. In other words, the use of accelerating frame of reference

facilitates examining the influence of each flow parameter while maintaining

other parameters constant.

In our freely evolving suspension study, all the simulations are performed

at Rem = 20 with two independent realizations for each case. The influence

of solid volume fraction is studied by simulating two volume fractions φ = 0.1

and 0.2. The simulations are initialized with a uniform mean flow for the gas

phase and zero granular temperature for the solid phase, and carried out until

a steady state solution is obtained in terms of k(f). To investigate the effect

of particle to gas density ratio we simulated density ratios ρ(p)/ρ(f) = 100 and

1000. The comparison of k(f) for the two density ratios with elastic particles

indicates that the level of gas-phase velocity fluctuations is not influenced
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Figure 4: Comparison of k(f) normalized with mean flow energy among elastic and inelastic

cases.

by particle densities significantly as shown in Fig. 3. In this figure k(f) in-

creases rapidly and then attains a relatively constant value. The evolution

of k(f) is also compared with fixed bed results at the same Reynolds number

and solid volume fractions represented by dashed lines in the figure. The

difference of k(f) in freely evolving suspensions from its value in the corre-

sponding fixed bed is less than 10%. This establishes the validity of using

fixed bed simulations as an approximation to high Stokes number suspen-

sions undergoing elastic collisions, which was employed in earlier studies (Xu

and Subramaniam, 2010; Tenneti et al., 2012).

In freely evolving suspensions with inelastic particle collisions, the energy

of the system is dissipated by collisional dissipation among particles as well

as the viscous dissipation of the carrier flow. To investigate the effect of the

coefficient of restitution (COR) on k(f), we selected three values 1.0, 0.9, and

0.7 for this parameter. The comparison of k(f) for particles with different
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CORs, presented in Fig. 4, indicates that k(f) is not very sensitive to COR

and the differences are not statistically significant, especially for the lower

volume fraction. In addition, as Figs. 4(a) and 4(b) show, the density ratio

has negligible effect on the level of k(f) for inelastic particles. Similar to

the results of elastic particles, the level of k(f) is in good agreement with

those of fixed beds with a maximum difference of 10% for the higher volume

fraction. The weak dependence of k(f) on inelasticity of particles further

shows the validity of using fixed beds as an approximation to high Stokes

number suspensions.

The independence of k(f) on COR indicates that these suspensions belong

to a regime that is dominated by viscous dissipation as opposed to collision-

ally dissipative regime (Sangani et al., 1996). To precisely characterize the

regime of the gas-solid flows examined in this study, we quantify the ratio

of time taken by gas-phase forces to affect particle motions tfluid to the aver-

age time between collisions tcoll (Wylie et al., 2003). The fluid timescale is

defined as

tfluid =

√
3T

σA
, (15)

where σA characterizes the standard deviation in particle accelerations. The

mean collisional timescale is computed from the inverse of Enskog collisional

frequency (Chapman and Cowling, 1953), that is

tcoll =
2

G
√
T
, (16)

with G defined as 8d2pn
√

π/mg(dp) in which n is the particle number density,

and g(dp) is the radial distribution function of particle assembly at contact.
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From Eqs. 15 and 16, the fluid to collisional timescale ratio is

tfluid
tcoll

=

√
3GT

2σA

, (17)

which is quantified for the cases simulated in this study, and ranges from

0.19 to 0.9. This confirms that the time required for the gas-phase stresses

to significantly influence the particles motion is less than the mean time be-

tween the collisions (tfluid < tcoll). In other words, these gas-particle systems

are dominated by viscous forces, and the energy loss due to collisional dissi-

pations does not affect significantly the evolution of k(f). Thus, the energy

of gas-phase fluctuating velocities evolves in a manner similar to fixed bed

assemblies.

To better understand the transfer of energy between two phases for freely

moving particles, it is useful to investigate the evolution equations of fluctu-

ating energies in both gas and solid phases. This also helps understand the

effect of COR through the collisional dissipation. The evolution of k(f) for a

homogeneous suspension is given by (Xu and Subramaniam, 2006; Pai and

Subramaniam, 2009; Tenneti et al., 2012)

ρ(f)(1− φ)
d

dt
k(f)

︸ ︷︷ ︸

unsteady term

=
〈

u
′′(f)
i τjin

(f)
j δ

(
x− x(I)

)〉

︸ ︷︷ ︸

Π(f)

− 2µ(f)
〈
I(f)SijSij

〉

︸ ︷︷ ︸

ε(f)

, (18)

where ρ(f) is the gas-phase density, τ is the stress tensor, n(f) is the unit

normal vector pointing outward from the gas phase into the solid phase,

δ
(
x− x(I)

)
is the Dirac delta function representing the gas-solid interface,

µ(f) is the gas-phase dynamic viscosity, and S is the strain rate tensor. The

interphase turbulent kinetic energy (TKE) transfer Π(f) in Eq. 18 arises from

the fluctuating velocity-stress tensor correlation which is non-zero at gas-

solid interface due to the Dirac delta function. The viscous dissipation in the
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gas phase ε(f) is a sink of energy since SijSij is always a positive quantity

(Tenneti et al., 2012). On the other hand, the evolution equation of solid-

phase fluctuating kinetic energy k(p) for a homogeneous system is

ρ(p)φ
d

dt
k(p)

︸ ︷︷ ︸

unsteady term

=
〈

u
′′(p)
i τjin

(p)
j δ

(
x− x(I)

)〉

︸ ︷︷ ︸

Π(p)

− Γcoll
︸︷︷︸

collisional dissipation

. (19)

In this equation, k(p) is defined as
〈
u′′(p) · u′′(p)

〉
/2 where u′′(p) is the solid-

phase velocity being u(p) − 〈u〉. In addition, ρ(p) is the solid-phase density,

and n(p) is the unit normal vector pointing outward from the particle into

the gas phase. Note that the unit normal vectors are related to each other

as n(p) = −n(f). It has been shown that the correlation of the fluctuating

particle acceleration with the fluctuating particle velocity Π(p) acts as both

source and sink of particle kinetic energy (Koch, 1990; Koch and Sangani,

1999; Tenneti et al., 2010).

The kinetic energy of the two-phase mixture em is defined as ρ(f)(1 −
φ)k(f) + ρ(p)φk(p). The mixture kinetic energy evolution equation is obtained

by adding Eqs. 18 and 19 as

dem
dt

= Π(f) +Π(p) − ε(f) − Γcoll. (20)

The principle of conservative interphase TKE transfer introduced by Xu and

Subramaniam (2007) implies that the summation of interphase TKE transfer

between the two phases (Π(f)+Π(p)) reduces to the inner product of the mean

slip 〈W〉 and the mean momentum transfer 〈F〉, such that

dem
dt

= 〈Wi〉 〈Fi〉
︸ ︷︷ ︸

Πm

−ε(f) − Γcoll. (21)
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For random assemblies, since the mean slip velocity is aligned with the mean

interphase momentum transfer (Hill et al., 2001; Tenneti et al., 2010), the

resultant interphase TKE transfer Πm is positive and represents a source of

energy, while the viscous dissipation and the collisional dissipation are sinks

of energy. At steady state the terms on the right-hand-side of Eq. 21 should

balance each other. The Πm term is computed directly from the DNS data by

inner product of the mean slip and the mean drag force measured from the

integration of the stress tensor at particle surface. The viscous dissipation

is also computed directly from the DNS by the expression given by Tenneti

et al. (2012), that is

ε(f) =
1

V (f)

∫

V

I(f)2µSijSijdV. (22)

The collisional dissipation of the system is estimated from the expression

given by Sangani et al. (1996) as

Γcoll =
24

dpπ1/2
(1− e) ρ(p)φg(dp)T

3/2 (23)

where e is the COR.

The budget analysis of Eq. 21 in Fig. 5 indicates that for these suspensions

that start from rest and attain a relatively low steady state granular tempera-

ture, the principal balance of terms is between Πm and ε(f), while Γcoll is neg-

ligible. The balance of energy implies that the level of collisional dissipation

in gas-solid suspensions with low granular temperature (ReT /Rem ≈ 0.12) is

not significant compared to interphase TKE transfer and viscous dissipation.

We also simulated cases with higher initial granular temperature (twice the

steady Reynolds number based on granular temperature; results not shown

here) and found that although Γcoll is initially higher than at the steady state,
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Figure 5: The balance of mixture energy equation terms (Eq. 21) normalized with µ(f)(|
〈W〉 | /dp)

2. Πm (©), ε(f) (⋄), Γcoll (△); hollow symbols (φ = 0.1), filled symbols

(φ = 0.2).

it does not affect the steady k(f) and k(p). Thus, the inelasticity of particles

does not influence the overall level of energy in the system and the level of

k(f) will be similar for flows with different COR. This finding suggests that

the model proposed for fixed beds is applicable to freely evolving suspensions

of gas-solid flow as well. In the following section, we quantify the anisotropy

of the gas-phase Reynolds stress in fixed beds.

5. Reynolds stress tensor of pseudo-turbulent gas-phase velocity

fluctuations

The gas-phase Reynolds stress is defined as

R
(f)
ij =

〈

u
′′(f)
i u

′′(f)
j

〉

, (24)
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(a) (b)

Figure 6: Deviatoric tensor components are shown for different φ and Rem obtained from

fixed bed simulations. The shaded region shows where the maximum of anisotropy occurs.

and its trace represents the level of gas-phase velocity fluctuations k(f). The

presence of particles introducing anisotropy in the gas-phase Reynolds stress

modifies the structure of the carrier phase (Uhlmann, 2008; Xu and Subra-

maniam, 2010; Tenneti et al., 2012). The gas-phase anisotropy tensor

b
(f)
ij =

R
(f)
ij

2k(f)
− 1

3
δij, (25)

is quantified for the fixed-bed particle configurations considered in this study.

It is observed in aforementioned studies that flow structures extend in the

streamwise direction. Therefore, it is logical to compute the Reynolds stress

and the corresponding anisotropy along the streamwise (parallel to mean slip)

and spanwise (perpendicular to mean slip) directions which are presented

in Figs. 6(a) and 6(b), respectively. The results indicate that the cross-

correlation of velocity fluctuations are negligible (not shown here) and the

normal component in the parallel direction is dominant compared to the
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(a) φ = 0.1 (�), φ = 0.2 (△) (b) φ = 0.3 (⋄), φ = 0.4 (▽)

Figure 7: Symbols show length scale of gas-phase velocity fluctuations, while the straight

lines show the corresponding local interparticle spacing. The shaded region shows where

the maximum of anisotropy occurs.

other normal components in the perpendicular direction. Hence, the state

of pseudo-turbulent gas-phase velocity fluctuations is axisymmetric (Pope,

2000).

An accurate model for the Reynolds stress should capture the behavior of

anisotropy with flow parameters. Fig. 6 indicates that the level of anisotropy

increases with Rem from Stokes flow to moderate Reynolds numbers (rang-

ing from 10 to 40) and then smoothly decreases. We hypothesize that this

variation in anisotropy is related to the ratio of the length scale associated

with gas-phase velocity fluctuations to the local average interparticle spacing.

These length scales are quantified using our simulations.

Increase of Reynolds number from low Rem flow initiates the separation

of boundary layer around particles and a standing eddy forms behind spheres

with a characteristic length (Pruppacher et al., 1970) which is a source of
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anisotropy in gas-phase Reynolds stress (Yusof, 1996; Uhlmann, 2008). How-

ever, defining an appropriate length scale for gas-phase velocity fluctuations

in a random particle assembly is not straightforward since the wakes are af-

fected by the presence of neighbor particles. We use the Eulerian two-point

correlation of gas-phase velocity fluctuations to define a characteristic length

for gas-phase velocity fluctuations L‖ as follows:

L‖ =
1

R‖(0)

∫ ∞

0

R‖(r)dr, (26)

where R‖(r) is

R‖(r) =
1

V (f)

∫

V(f)

u
′′(f)
‖ (x) · u′′(f)

‖ (x− r)dV, (27)

the two-point correlation in the parallel direction. This gas-phase velocity

fluctuations length scale shown in Fig. 7 decreases with Rem due to the fact

that the flow structures become finer and less correlated to other surrounding

structures. In addition, increase of solid volume fraction makes the gas-phase

velocity fluctuations less spatially correlated due to the influence of near

particles, and hence the length scale decreases.

We use the radial distribution function g(r) to define a characteristic local

interparticle spacing within a neighborhood of a test particle. Note that other

studies used a similar approach to compute the nearest neighbor distance

for point particles (Hertz, 1909) and finite size particles (Torquato et al.,

1990) in random particle arrangements. The radial distribution function is

shown in Fig. 8 for different volume fractions. The radial distribution is the

probability of finding a particle at separation r given that there is a particle

at the coordinate origin. By assuming a spherical shell of volume 4πr2δr at
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Figure 8: Radial distribution function estimated from 100 realizations for different φ.

separation r, the number of particles in the shell is 2πNpng(r)r
2δr. Thus, we

compute the local interparticle spacing of the suspension using the expression

Lint

dp
=

1

dp

∫ R

dp
g(r)r2lf(l)dr

∫ R

dp
g(r)r2f(l)dr

, (28)

which is a weighted average of distances among particles in a spherical shell

between the minimum separation dp and R. In Eq. 28, l is the surface

to surface distance defined as r − dp, and f(l) is a weight function. We

choose R as the second peak of g(r), which includes all particles in the local

neighborhood of the test particle. The weight function is assumed to have

the form 1/lp with p ≥ 0. Note that the choice of p = 0 causes Lint to be

equally weighted by neighbor particles, while choosing higher values for p

preferentially weights the most proximate particles. We select p = 1, a value

that takes into account the importance of all particles in the region between

dp and R in a manner where proximate particles contribute more to the local

interparticle spacing.
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The results indicate that the local interparticle spacing (shown as straight

lines in Fig. 7) intersect the length scales of gas-phase velocity fluctuations

at the Reynolds numbers where the anisotropy starts to decrease (Fig. 6). At

low Reynolds numbers, flow structures formed behind particles elongate with

Rem that give rise to the increase of anisotropy. After moderate Reynolds

numbers (10 ≤ Rem ≤ 40) the wakes become as large as the gaps among

particles and are broken up due to interaction with neighbor spheres. Thus,

the anisotropy is characterized by the ratio of gas-phase velocity fluctuations

length scale to local interparticle spacing. The break up of elongated struc-

tures redistributes the fluctuating velocities energy among Reynolds stress

components and decreases the anisotropy.

It is also observed that the increase of solid volume fraction causes an at-

tenuation in the level of anisotropy. Increase of solid volume fraction lessens

the local interparticle gaps and does not allow the formation of distinct wake

wake structures, leading to the decrease of anisotropy. This is confirmed

in Fig. 7 since the length scale of gas-phase velocity fluctuations decreases

with volume fraction. Breault et al. (2008) also reported that the axial solid

dispersion coefficient of particles in a particle-laden flow decreases with vol-

ume fraction, which is interpreted as indication that R|| decreases, while R⊥

increases, and our data is in agreement with this trend observed in experi-

ments.

6. Conclusion

In this work we characterized the fluctuations in gas-phase velocity us-

ing PR-DNS of steady flow at finite Reynolds number (based on the mean
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slip velocity) in fixed particle beds and freely evolving gas-solid suspensions.

The evolution of initially isotropic turbulence in a fixed particle bed with

mean slip reveals that for the solid volume fraction and Reynolds number

considered in this study, the gas-phase velocity fluctuations arising from the

presence of particles always relax to their pseudo-turbulent level quantified

by Tenneti et al. (2012), irrespective of the level of initial turbulence. The

initial level of turbulence required to match the level of pseudo-turbulent ve-

locity fluctuations is estimated to be very high, e.g. at Rem = 100, φ = 0.2

and dp/η = 5, the equivalent Reλ is 320. Therefore, the principal mech-

anism for producing gas-phase velocity fluctuations in particle-laden flows

with dp/η > 1 e.g. fluidized beds, is the interaction of gas and solid phases

through the mean slip velocity. Simulations of freely evolving suspensions

indicate that k(f) is a strong function of volume fraction, similar to observa-

tions in fixed beds. The change of particle density for high Stokes number

particles does not significantly change the level of k(f) since the time required

for the particle configuration to change is longer than the momentum relax-

ation time. In addition, the variation of inelasticity does not substantially

affect k(f) since viscous dissipation in these systems dominates collisional

dissipation. The current study confirms previous findings (Uhlmann, 2008;

Xu and Subramaniam, 2010; Tenneti et al., 2012) that the Reynolds stress is

highly anisotropic and axisymmetric along the mean slip. Over a wide range

of volume fraction (0.1 ≤ φ ≤ 0.4) the anisotropy increases with Reynolds

number as the flow structures form and elongate in the mean slip direc-

tion. As Rem increases in the range 10 ≤ Rem ≤ 40, these structures are

affected by neighbor particles that causes them to decorrelate over length
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scales smaller than local interparticle spacing, resulting in attenuation of

anisotropy. Increase of the volume fraction also decreases the local inter-

particle gaps and flow structures are broken up leading to attenuation of

anisotropy. This work gains insight into the nature of gas-phase velocity

fluctuations in gas-solid flows that can be used to propose a model for the

Reynolds stress due to the pseudo-turbulent gas-phase velocity fluctuations

in homogeneous suspensions.
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Appendix A. Particle motion equations in PUReIBM

In the soft-sphere approach, the contact mechanics between two over-

lapping particles is modeled by a system of springs and dashpots in both

normal and tangential directions. The spring causes colliding particles to

rebound, and the dashpot mimics the dissipation of kinetic energy due to

inelastic collisions. The spring stiffness coefficients in the tangential and nor-

mal directions are kt and kn, respectively. Similarly, the dashpot damping

coefficients in the tangential and normal directions are ηt and ηn, respec-

tively. The spring stiffness and dashpot damping coefficients are related to

the coefficient of restitution and the coefficient of friction (Garg et al., 2010).

The particles considered in this study are assumed to be frictionless. Thus

the tangential component of the contact force is zero. Therefore, only normal
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component of the contact force Fnij is considered at time t which is given by

Fnij
= knδijnij −

m

2
ηnVnij

, (A.1)

where δij is the overlap between the particles computed using the relation

δij = dp− | X(i) −X(j) |, (A.2)

and Vnij
is the relative velocity in the normal direction that is defined using

Vnij
=

[(
V(i) −V(j)

)
· r̂ij

]
r̂ij. (A.3)

The normal vector r̂ij is the unit vector along the line of contact pointing

from particle i to particle j.

References

Bagchi, P., Balachandar, S., 2004. Response of the wake of an isolated particle

to an isotropic turbulent flow. Journal of Fluid Mechanics 518, 95–123.

Balachandar, S., Eaton, J. K., 2010. Turbulent dispersed multiphase flow.

Annual review of fluid mechanics 42, 111–133.

Bolio, E. J., Yasuna, J. A., Sinclair, J. L., 1995. Dilute turbulent gas-solid

flow in risers with particle-particle interactions. AIChE Journal 41 (6),

1375–1388.

Breault, R. W., Guenther, C. P., Shadle, L. J., 2008. Velocity fluctuation

interpretation in the near wall region of a dense riser. Powder Technology

182 (2), 137 – 145.

34



Burton, T. M., Eaton, J. K., 2005. Fully resolved simulations of particle-

turbulence interaction. Journal of Fluid Mechanics 545, 67–111.

Chapman, S., Cowling, T. G., 1953. The mathematical theory of non–uniform

gases, 2nd Edition. Cambridge University Press.

Cocco, R., Shaffer, F., Hays, R., Karri, S. R., Knowlton, T., 2010. Particle

clusters in and above fluidized beds. Powder Technology 203 (1), 3 – 11.

Cundall, P. A., Strack, O. D. L., 1979. A discrete numerical model for gran-

ular assemblies. Geotechnique 29, 47–65.

Ding, J., Gidaspow, D., 1990. A bubbling fluidization model using kinetic

theory of granular flow. AIChE Journal 36 (4), 523–538.

Doig, I. D., Roper, G. H., 1967. Air velocity profiles in presence of cocur-

rently transported particles. Industrial Engineering Chemistry Fundamen-

tals 6 (2), 247–256.

Fan, R., Marchisio, D. L., Fox, R. O., 2004. Application of the direct quadra-

ture method of moments to polydisperse gas-solid fluidized beds. Powder

Technology 139 (1), 7 – 20.

Garg, R., Galvin, J., Li, T., Pannala, S., 2010. Documentation of open–

source mfix–dem software for gas–solids flows. Tech. rep., National Energy

Technology Laboratory, Department of Energy.

URL https://www.mfix.org

Garg, R., Tenneti, S., Mohd-Yusof, J., Subramaniam, S., 2011. Direct nu-

merical simulation of gas-solids flow based on the immersed boundary

35



method. In: Computational Gas-Solids Flows and Reacting Systems: The-

ory, Methods and Practice. IGI Global.

Halvorsen, B., Guenther, C., O’Brien, T. J., 2003. CFD calculations for

scaling of a bubbling fluidized bed . In: Proceedings of the AIChE annual

meeting. AIChE, San Francisco, CA, pp. 16–21.
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