
                             Elsevier Editorial System(tm) for International Journal of Multiphase Flow 
                                  Manuscript Draft 
 
 
Manuscript Number:  
 
Title: Gas-phase velocity fluctuations in statistically homogeneous fixed particle assemblies from 
particle-resolved direct numerical simulation  
 
Article Type: Original Research Paper 
 
Keywords: Gas-solid flow, Gas-phase velocity fluctuations, particle-resolved direct numerical 
simulation, immersed boundary method 
 
Corresponding Author: Prof. Shankar Subramaniam, Ph.D. 
 
Corresponding Author's Institution:  
 
First Author: Sudheer  Tenneti 
 
Order of Authors: Sudheer  Tenneti; Rahul Garg; Shankar Subramaniam, Ph.D. 
 
Abstract: Gas-phase velocity fluctuations are quantified using particle-resolved direct numerical 
simulation (PR-DNS). The kinetic energy associated with the gas-phase velocity fluctuations k in steady 
flow past fixed random assemblies of monodisperse spheres is characterized as a function of solid 
volume fraction φ and the Reynolds number based on the mean slip velocity Re. The PR-DNS approach 
is based on a formulation we refer to as the Particle-resolved Uncontaminated-fluid Reconcilable 
Immersed Boundary Method (PUReIBM). A simple scaling analysis is used to explain the dependence of 
k on φ and Re. The steady value of k results from the balance between the source of k_ due to 
interphase transfer of kinetic energy, and the dissipation rate (ε) of k in the gas-phase. It is found that it 
is appropriate to model the dissipation rate of k in gas-solid flows using a length scale that is analogous 
to the Taylor microscale used in single-phase turbulence. Using the  PUReIBM PR-DNS data for k and ε 
we also infer an   eddy viscosity for gas-solid flow. 
 
 
 
 



095E, H. M. Black Engineering Building
Department of Mechanical Engineering
Iowa State University
Ames, IA 50011
Ph: (515) 294–0369

Fax: (515) 294–3261

email: sudheert@iastate.edu

April 10, 2012

Editorial Office,
International Journal of Multiphase Flow

Department of Mechanical Engineering
The John Hopkins University
Baltimore, MD 21218

Dear Sir/Madam:

Please find enclosed the manuscript of a paper that we would like to submit to International

Journal of Multiphase Flow (IJMF) as a full–length article. The details of the manuscript
are:

Title: “Gas–phase velocity fluctuations in statistically homogeneous fixed particle as-
semblies from particle–resolved direct numerical simulation”

Author: S. Tenneti, R. Garg, and S. Subramaniam

Journal: International Journal of Multiphase Flow

This paper is closely related to another article that we are simultaneously submitting to IJMF.
The title of the second article is “Gas–phase velocity fluctuations in statistically homogeneous
fixed particle beds and freely evolving suspensions using particle–resolved direct numerical
simulation” and is authored by M. Mehrabadi, S. Tenneti, and S. Subramaniam. We bring
this to your attention so that it may be factored into your review process.

PACS codes: 47.61.Jd, 47.55.Kf

This is previously unpublished work and has not been simultaneously submitted for publication
elsewhere. Thank you.

Sincerely,

Sudheer Tenneti

Enclosures: One(1) copy of the manuscript

Cover Letter



Highlights of

“Gas–phase velocity fluctuations in statistically homogeneous

fixed particle assemblies from particle–resolved direct numerical

simulation”

• Level of gas–phase velocity fluctuations in gas–solid flow is quantified using particle-resolved simulation

of flow past fixed spheres

• A Taylor microscale type length scale is found to be appropriate to model dissipation rate in gas–solid

flows

• A new eddy viscosity model for gas–solid flows is proposed that can be used in CFD simulations of

fluidized beds
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Gas–phase velocity fluctuations in statistically

homogeneous fixed particle assemblies from

particle–resolved direct numerical simulation

S. Tennetia, R. Garga, S. Subramaniama,∗

aDepartment of Mechanical Engineering, Center for Computational Thermal–fluids

Research, Iowa State University,Ames, IA 50011, USA

Abstract

Gas–phase velocity fluctuations are quantified using particle–resolved direct

numerical simulation (PR–DNS). The kinetic energy associated with the gas–

phase velocity fluctuations kf in steady flow past fixed random assemblies

of monodisperse spheres is characterized as a function of solid volume frac-

tion φ and the Reynolds number based on the mean slip velocity Rem. The

PR–DNS approach is based on a formulation we refer to as the Particle–

resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method

(PUReIBM). A simple scaling analysis is used to explain the dependence

of kf on φ and Rem. The steady value of kf results from the balance be-

tween the source of kf due to interphase transfer of kinetic energy, and the

dissipation (εf) of kf in the gas–phase. It is found that it is appropriate

to model the dissipation of kf in gas–solid flows using a length scale that is

analogous to the Taylor microscale used in single–phase turbulence. Using

the PUReIBM PR–DNS data for kf and εf we also infer an eddy viscosity
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for gas–solid flow.

1. Introduction

Gas-solid flows are encountered in industrial devices such as fluidized

beds and in pneumatic conveying. It is generally agreed that gas–phase ve-

locity fluctuations and particle–particle interactions play an important role in

such gas–solid flows. For instance, the gas–solid flow in circulating fluidized

bed risers is characterized by the tendency of the particles to segregate to-

wards the pipe wall (Miller and Gidaspow, 1992). This can in turn affect

the particle–wall heat transfer. Gas–phase velocity fluctuations also affect

the heat transfer and mixing of chemical species inside the fluidized bed.

Therefore, quantifying the level of gas–phase velocity fluctuations in canoni-

cal gas–solid flows is an important step towards understanding gas–solid flow

in industrial devices.

Device–scale calculations using computational fluid dynamics (CFD) sim-

ulations of multiphase flow are a promising route to inexpensive design and

scale–up of industrial process equipment (Halvorsen et al., 2003; Kashiwa

and Gaffney, 2003; Sun et al., 2007). CFD of multiphase flow involves solv-

ing the averaged equations for mass, momentum and energy in both the solid

and fluid phases. Figure 1 shows a schematic of the computational domain

in a typical CFD simulation of gas–solid flow. In every grid cell, conserva-

tions equations for averaged quantities such as volume fraction, and velocity

are solved for both phases. These conservation equations are obtained using

a statistical averaging procedure (Anderson and Jackson, 1967; Drew and

Passman, 1998), and hence the solution to these average equations involves
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Figure 1: Schematic of a CFD simulation of gas–solid flow. In every computational grid

cell, governing equations for the averaged quantities in both phases are solved. Here
〈

u
(f)

〉

is the average gas–phase velocity and
〈

u
(s)

〉

is the average solid–phase velocity. The

average interphase momentum transfer
〈

S
(f)
M

〉

= −
〈

S
(s)
M

〉

that represents the coupling

between the solid and the gas–phase appears as an unclosed term in both equations.

Also, the transport of Reynolds stress in each phase is an unclosed term in the average

momentum equation of that phase. Here u
′′(f) denotes the fluctuating velocity in the

gas–phase.

modeling the unclosed terms that represent interphase interactions. The

conservation equation for mean momentum in the gas phase requires models

for the average interphase momentum transfer and the transport of the sec-

ond moments of the fluctuating velocity (Reynolds stress) in the gas phase.

The average interphase momentum transfer has been extensively studied and

there is a general consensus on drag models (Ergun, 1952; Wen and Yu, 1966;

Syamlal, M. and O’Brien, T. J., 1987; Gidaspow, 1994; Hill et al., 2001a,b;

van der Hoef et al., 2005; Beetstra et al., 2007; Tenneti et al., 2011). How-

ever, the gas–phase Reynolds stress has not been comprehensively quantified

in the parameter range corresponding to fluidized beds.

Nevertheless there is some evidence to indicate that gas–phase velocity
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fluctuations can be significant. Intrusive hot wire measurements by Moran

and Glicksman (2003) indicate that the level of gas–phase velocity fluctu-

ations can be significant in a circulating fluidized bed riser at dilute solid

volume fraction. In dense gas–solid flows non–intrusive measurements are

difficult because of limited optical access, and the effect of intrusive in-

strumentation could alter the flow considerably. Although various numer-

ical studies have been performed to understand the effect of particles on

the flow turbulence, the vast majority of existing work (Squires and Eaton,

1991; Elghobashi and Truesdell, 1993; Boivin et al., 1998; Sundaram and

Collins, 1999; Mashayek and Taulbee, 2002) addresses particle–turbulence

interactions with particle diameter D smaller than the Kolmogorov scale

of turbulence η. In industrial applications of gas–solids flow such as flu-

idized beds (Moran and Glicksman, 2003), the particle diameter D is usually

larger than the Kolmogorov length scale η. There are relatively few stud-

ies (Uhlmann, 2008; Xu and Subramaniam, 2010; Lucci et al., 2011) for par-

ticles with D > η, and but for one study (Xu and Subramaniam, 2010) these

focus on flows with nonzero mean slip velocity. Unlike in single–phase tur-

bulence, the mean slip velocity is an important parameter in gas–solid flows

with D > η. Therefore, there is a need to quantify the gas–phase Reynolds

stress over a range of solids volume fraction and Reynolds number based on

the mean slip velocity between the solid and gas–phase.

In the absence of such comprehensive quantification, the gas–phase Reynolds

stress term is sometimes neglected in CFD simulations of dense gas–solid flow

on the grounds that the dominant forces in the gas–phase momentum bal-

ance are the pressure drop and drag force (Hrenya and Sinclair, 1997). When
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models (Benyahia et al., 2005) for the transport of gas–phase Reynolds stress

are used, such as in the widely used gas–solid flow CFD code MFIX (Syam-

lal et al., 1993), these models are simple extensions of single–phase turbu-

lence models that have not been validated in canonical flows. Similarly, due

to the lack of data for the gas–phase Reynolds stress at low volume frac-

tions, this term is also neglected in some CFD simulations of dilute gas–solid

flow (Agrawal et al., 2001). However, CFD simulations of gas–solid flow

in circulating fluidized beds that incorporated a model for the transport of

the gas–phase Reynolds stress generally showed good agreement for mean

flow velocity profiles with experiments (Bolio et al., 1995; Bolio and Sinclair,

1995; Crowe, 2000; Zhang and Reese, 2003; Benyahia et al., 2005). These

observations along with the measurements of Moran and Glicksman (2003)

indicate that quantification and modeling of the gas–phase Reynolds stress

is necessary.

In some studies (Ahmadi and Ma, 1990b; Bolio and Sinclair, 1995; Balzer

et al., 1998; Benyahia et al., 2005) the gas–phase Reynolds stress term is

modeled using an eddy viscosity in a fashion similar to single–phase turbu-

lence. However, if the turbulent kinetic energy kf and the dissipation rate

εf were quantified in gas–solid flow, one could develop a validated eddy vis-

cosity model. In other works (Ahmadi and Ma, 1990b,a; Bolio and Sinclair,

1995; Balzer et al., 1998; Benyahia et al., 2005) a two–equation approach

with transport equations for kf and εf that are modified to account for the

presence of solid particles is used. There are also a few studies in which only

a transport equation for kf is solved (one–equation approach) and εf is mod-

eled using a Kolmogorov scaling for dissipation (Ahmadi and Ma, 1990b,a;
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Kenning and Crowe, 1997; Crowe, 2000). A review of existing multiphase

turbulence models can be found in Crowe et al. (1996).

Both the one–equation and two–equation approaches need accurate mod-

els for the generation and dissipation rate of kf . The presence of particles and

their changing configuration produces high levels of gas–phase velocity fluctu-

ations, in addition to the turbulent motions already present in the gas phase.

In order to account for the generation of gas–phase velocity fluctuations by fi-

nite sized particles, Yuan and Michaelides (1992) proposed a model in which

the velocity deficit in the wake of the particle is the source and the work

done by the drag force is the dissipation of gas velocity fluctuations. Yarin

and Hetsroni (1994) employed a similar idea but used a more detailed de-

scription of the wake. Although both models showed good agreement with

experiments (Tsuji et al., 1984; Modarress et al., 1984), they are not de-

rived by the application of detailed balance laws. Kenning and Crowe (1997)

proposed a new turbulence model starting from the conservation equation of

mechanical energy in gas–solid flow. In this model, work done by the particle

drag force acts as a source for gas–phase velocity fluctuations. Dissipation

of gas–phase velocity fluctuations is modeled along the lines of single–phase

turbulence(εf ∼ k
3/2
f /ldiss). The length scale ldiss considered in their work

corresponds to a hybrid length scale of inter–particle spacing and the dissi-

pation length scale used in single–phase turbulence. This model was further

improved and showed good agreement with experimental data obtained from

particle–laden turbulent flow in pipes (Crowe, 2000).

Existing models for the gas–phase Reynolds stress in gas–solid flow that

are widely used in CFD calculations are simple extensions of single–phase tur-
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bulence models. Most closure models do not distinguish between the velocity

fluctuations generated by the presence of particles and inherent turbulence in

the flow. This is because both these mechanisms essentially manifest them-

selves as a non–zero Reynolds stress in the gas–phase. However, because

the physical mechanisms resulting in the generation and dissipation of these

velocity fluctuations are different, one would expect that their scaling with

nondimensional parameters could also be different. This would then imply

that models for single–phase turbulence may not be adequate for modeling

the pseudo–turbulent velocity fluctuations arising from the presence of parti-

cles. For instance, models used for the dissipation of turbulent kinetic energy

are based on the Kolmogorov scaling (k
3/2
f /ldiss) used in single–phase turbu-

lence, but their validity in particle–laden flows is not verified. Furthermore,

although two–equation k–ε models are very widely used in CFD of gas–solid

flows, the disadvantage of such models is that they cannot account for the

anisotropy of the gas–phase Reynolds stress. Recent particle–resolved di-

rect numerical simulation of flow past finite sized particles revealed that the

Reynolds stress in the gas–phase is indeed highly anisotropic (Xu and Subra-

maniam, 2010). This anisotropic Reynolds stress poses additional challenges

in modeling gas–solid flows. Anisotropy in the Reynolds stress for the case

of inherent turbulence in gas–solid flow with D < η has been accounted for

in some recent models (Wang et al., 1998).

In this study we use direct numerical simulation to address these out-

standing questions related to gas–phase velocity fluctuations in gas–solid

flow. A popular numerical approach is the point particle direct numerical

simulation methodology (Squires and Eaton, 1991; Elghobashi and Trues-
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dell, 1993; Boivin et al., 1998; Sundaram and Collins, 1999; Mashayek and

Taulbee, 2002) (DNS) in which the particles are treated as points and the

effect of the particles on the gas–phase is represented by a force applied at

the particle center. This approach is valid only when the particle size is

much smaller compared to the Kolmogorov length scale. When the particle

size is larger or comparable to the Kolmogorov length scale, the effects of

the wake generated by the particles become important and hence it is im-

portant to resolve the boundary layers around the particle. For particles of

size comparable to or larger than the Kolmogorov length scale, the appropri-

ate numerical approach is the particle–resolved direct numerical simulation

(PR–DNS) methodology in which all the scales of the inherent turbulence

and the flow scales introduced by the presence of large particles are resolved.

PR–DNS has been used to study the interaction of a single particle with

decaying homogeneous isotropic turbulence (Bagchi and Balachandar, 2003;

Burton and Eaton, 2005). PR–DNS has also been employed to study the

effect of a collection of particles on decaying homogeneous isotropic turbu-

lence (Lucci et al., 2011), particle–laden turbulent channel flow(Uhlmann,

2008) as well as gas–solid flow with upstream turbulence (Xu and Subra-

maniam, 2010). In fact, understanding the generation of gas–phase velocity

fluctuations using PR–DNS has been identified as one of the future directions

in the review article by Balachandar and Eaton (2010). Therefore, PR–DNS

is appropriate to characterize the level of gas–phase velocity fluctuations in

gas–solid suspensions of large, high Stokes number particles over a wide range

of solid volume fraction and Reynolds number based on the mean gas–solid

slip velocity.
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We use PR–DNS to quantify the strength of gas–phase velocity fluctua-

tions and the state of anisotropy of the gas–phase Reynolds stress tensor in

steady flow through a statistically homogeneous fixed assembly of monodis-

perse spheres. To differentiate between the gas–phase velocity fluctuations

generated by the presence of particles and the inherent turbulence present in

the flow field, we consider “laminar” gas–solids flow in this work. In the con-

text of this work, “laminar” flow implies that there is no inherent turbulence

in the flow field i.e. in the absence of particles, the flow field is not turbulent.

In fixed–bed simulations the particles are held stationary and a steady flow is

established by imposing a pressure gradient that corresponds to the desired

flow rate. Use of the fixed–bed simulation methodology for gas–solid flows

is justified if the configuration of the particles changes very slowly compared

to the time it takes to attain mean momentum balance. The time scale

over which the particle configuration changes depends on ReT = DT 1/2/νf ,

which is the Reynolds number based on the particle fluctuating velocity that

is characterized by the particle granular temperature T . Particle–resolved

simulations of freely evolving suspensions (Tenneti et al., 2010) and recent

high–speed imaging of particles (Cocco et al., 2010) show that this value

of ReT is low for high Stokes number suspensions. Moreover, using PR–

DNS, Mehrabadi et al. (2012) observed that the level of gas–phase velocity

fluctuations observed in freely evolving suspensions is close to that observed

in fixed particle assemblies. The fixed–bed simulation setup has been used

successfully to extract computational drag laws (Hill et al., 2001a,b; van der

Hoef et al., 2005; Beetstra et al., 2007; Tenneti et al., 2011) as well as to

understand the effect of particle clusters on gas–phase turbulence (Xu and
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Subramaniam, 2010). Using the data obtained from PR–DNS, we analyze

the implications for modeling the dissipation rate of kinetic energy in the

gas–phase by considering the energy balance equation similar to the work

of Kenning and Crowe (1997). We also use the particle–resolved DNS data

to propose an eddy viscosity for gas–solid flow in terms of solid volume frac-

tion and mean flow Reynolds number.

The rest of the paper is organized as follows. In section 2 we define the

ensemble–averaged quantities that are computed from PR–DNS. We briefly

describe our PR–DNS approach and its validation in sections 3 and 4, respec-

tively. The results quantifying the strength of gas–phase velocity fluctuations

and anisotropy of gas–phase Reynolds stress in terms of solid volume fraction

and mean flow Reynolds number are presented in section 6. The multiphase

turbulence model derived using a simple scaling analysis is described in sec-

tion 7. An eddy viscosity model for gas–solid flow is proposed in section 8,

followed by the conclusions in section 9.

2. Gas–phase velocity variance

In the Eulerian two-fluid theory, the fluid–phase Reynolds stress is defined

as a phasic average, which is an average conditional on the presence of the

fluid phase Drew (1983); Drew and Passman (1998); Pai and Subramaniam

(2009). If Q (x, t) is any field, then its phasic average
〈

Q(f)
〉

(x, t) referred

to as its fluid–phase mean, is defined as:

〈

Q(f)
〉

(x, t) =
〈If (x, t)Q (x, t)〉

〈If (x, t)〉
. (1)

Here the fluid–phase indicator function If is unity if the point x lies in the

fluid–phase and zero otherwise.
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Using this definition, the ensemble–averaged kinetic energy in the fluid

phase
〈

E(f)
〉

is defined as

〈

E(f)
〉

=
1

2

〈Ifuiui〉
〈If 〉

, (2)

where u is the fluid velocity. It is easy to see that the average kinetic energy

in the fluid phase is the sum of the kinetic energy in the mean fluid motion Ef

and the average kinetic energy in the fluctuating motions kf . The average

kinetic energy in the mean fluid motion is given by Ef =
1

2

〈

u
(f)
i

〉〈

u
(f)
i

〉

,

where the quantity
〈

u
(f)
i

〉

is the phase–averaged fluid velocity. The average

kinetic energy in the fluctuating motion of the fluid is given by

kf =
1

2

〈

Ifu
′′(f)
i u

′′(f)
i

〉

〈If〉
, (3)

where fluctuations in the fluid velocity field are defined with respect to the

phase–averaged fluid velocity i.e., u
′′(f)
i = ui −

〈

u
(f)
i

〉

. We now describe

how kf is computed from solution of flow past statistically homogeneous

suspensions using particle–resolved DNS.

2.1. Quantifying gas–phase velocity variance from particle–resolved DNS

In PR–DNS a single realization from the ensemble of events that con-

tribute to the phasic average in Eq. 3 is simulated (cf. Fig. 2). Here we

describe how PR–DNS data from multiple realizations is used to compute

kf . Let u (x, t;ω) be the velocity field obtained from particle–resolved DNS

of flow past a random configuration of particles represented by the positions

and velocities
{

X(i),V(i), i = 1, . . . , Np

}

of Np particles. This configuration

represents a realization ω in the event space Ω. The ensemble–averaged ve-

locity field or the mathematical expectation is defined as (Subramaniam,

11



Figure 2: Schematic showing the concept of the average fluid–phase velocity. The average

fluid–phase velocity that is solved in gas–solid CFD simulations is obtained by averaging

over all possible realizations.

2000):

〈u〉 (x, t) =
∫

Ω

u (x, t;ω) dPω, (4)

where Pω is the probability measure that is defined on Ω. This concept is

explained schematically in Fig. 2. The average gas–phase velocity and volume

fraction that are solved in the CFD calculations are obtained by averaging

over all possible realizations. Fluctuations in the gas–phase velocity are

defined as departures of the instantaneous velocity field from the average

gas–phase velocity.

If the flow is statistically homogeneous, ensemble–averaged quantities can

be approximated by taking the volumetric mean of the solution fields, e.g.

the volumetric mean of the velocity field over the fluid region is defined as:

〈

u(f)
〉

V
(t;ω) =

1

Vf

∫

V

If (x, t;ω)u (x, t;ω)dV, (5)
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where Vf is the volume of the region occupied by the fluid–phase. It has

been shown elsewhere (Tenneti et al., 2011) that a statistically homogeneous

gas–solid flow is well approximated by flow past a random configuration of

particles in a periodically repeating unit cell. Therefore, volume averages can

be used to estimate the true mathematical expectation. The volumetric mean

approaches the ensemble average in the limit of infinite box size (i.e., V →
∞). Periodic bounday conditions can be used in a computational domain

with finite box size provided the two–point correlations in the particle and

the fluid phases decay to zero within the box length1. In Section 5 we show

that the Eulerian two–point correlation of fluid velocity does indeed decay

to zero within 3 to 4 particle diameters for different grid resolutions, box

sizes and Reynolds numbers. However, a finite box may not account for the

statistical variability arising from different particle configurations, we require

very large box sizes. In order to accurately estimate the ensemble–averaged

quantities from finite box sizes, we can simulate fixed particle assemblies

and average over different configurations. For fixed particle assemblies, the

ensemble–average can be estimated by averaging over different configurations

or realizations i.e.,

{

u(f)
}

V ,M
(t) =

1

M

M
∑

µ=1

〈

u(f)
〉

V
(t;ωµ). (6)

In the above equation
{

u(f)
}

V ,M
denotes an estimate to the true expectation

〈

u(f)
〉

and M denotes the number of independent realizations. Similarly, for

each realization of the gas–solid flow we compute the kinetic energy in the

1This is simply the two–phase extension of the criterion given by Pope (2000) for

single–phase turbulent flows.
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fluctuating motions using volume averaging:

k
(µ)
f =

1

Vf

∫

V
(µ)
f

1

2

(

u (x, t, ωµ)−
{

u(f)
}

V ,M

)

·
(

u (x, t, ωµ)−
{

u(f)
}

V ,M

)

dV.

(7)

The kf obtained from a single realization (cf. 7) is averaged over multiple in-

dependent realizations (MIS) to obtain an estimate for the ensemble-averaged

kinetic energy:

kf =
1

M

M
∑

µ=1

k
(µ)
f . (8)

In the next section we describe the particle–resolved DNS approach that

is used in this work to quantify kf in steady flow past fixed assemblies of

spheres.

3. Numerical Method

The particle–resolved DNS methodology employed in this work is called

Particle–resolved Uncontaminated–fluid Reconcilable Immersed Boundary

Method (PUReIBM). In PUReIBM, we employ Cartesian grids and solve

the mass and momentum conservation equations on all the grid points (in-

cluding those lying inside the particles). A fictitious flow is generated inside

the particles that does not affect the exterior flow solution. The mass and

momentum conservation equations that are solved in PUReIBM are

∂ui

∂xi
= 0 , (9)

and

ρf
∂ui

∂t
+ ρfSi = −gIBM,i + µf

∂2ui

∂xj∂xj
+ fu,i, (10)
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respectively, where gIBM is the pressure gradient, S = ∇ · (uu) is the con-

vective term in conservative form, and u is the instantaneous velocity field.

In Eq. (10), fu is the additional immersed boundary (IB) force term that

accounts for the presence of solid particles by ensuring the no–slip and no–

penetration boundary conditions at the particle–fluid interface.

The surface of the solid particle is represented by a discrete number of

points called boundary points. For spherical particles, the boundary points

are specified by discretizing the sphere in spherical coordinates. In Fig. 3,

a schematic describing the computation of the IB forcing is shown for the

equatorial plane passing through the spherical particle. Another set of points

called exterior points are generated by projecting these boundary points onto

a sphere of radius r +∆r, where r is the radius of the particle (see exterior

point represented by an open circle on the dashed line in Fig. 3). Similarly,

the boundary points are projected onto a smaller sphere of radius r−∆r and

these points are called interior points. In our simulations ∆r is taken to be

same as the grid spacing. The IB force is computed at the interior points.

At these points the fluid velocity is forced in a manner similar to the ghost

cell approach used in standard finite-difference/finite-volume based meth-

ods (Patankar, 1980). Specifically for the case of zero solid particle velocity,

the velocity at the interior points is forced to be equal in magnitude but op-

posite in direction of the fluid velocity at the corresponding exterior points.

Velocities at the exterior and interior points are obtained by interpolating the

velocities from the neighboring grid nodes. The computation of IB forcing

is similar to the direct forcing method proposed by Yusof (1996). The IB

forcing at the (n+ 1)th time-step is specified to cancel the remaining terms
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Exterior Point

-un

-utet etut

∆r

unen

∆r

r

Figure 3: A schematic showing the computation of the immersed boundary forcing for a

stationary particle. The solid circle represents the surface of the particle at r. Open dot

shows the location of one exterior point at r + ∆r (only one exterior point is shown for

clarity, although there is one exterior point for each interior point) and filled dots show the

location of interior points at r −∆r where the immersed boundary forcing is computed.

For the special case of a stationary particle, the velocity at the interior points is forced

to be the opposite of the velocity at the corresponding exterior points. In the schematic,

unen represents the normal velocity and utet represents the tangential velocity at the

exterior point.
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in the momentum conservation, and to force the velocity to its desired value

ud at the interior points:

fn+1
u,i = ρf

ud
i − un

i

∆t
+ ρfS

n
i + gnIBM,i − µf

∂2

∂xj∂xj
un
i . (11)

The IB forcing at the interior points is then interpolated to the neighboring

grid nodes that do not include grid nodes in the fluid phase. It is noteworthy

that the discretization of the sphere in spherical coordinates is independent

of the grid resolution and hence to some extent, decouples the grid resolution

from the accuracy with which the boundary condition is imposed.

The governing equations in PUReIBM are solved by imposing periodic

boundary conditions on fluctuating variables that are now defined. The ve-

locity field is decomposed into a spatially uniform mean flow that is purely

time–dependent and a fluctuating velocity field u′ that is periodic, i.e.,

u (x, t) = 〈u〉
V
(t) + u′ (x, t) , (12)

where the volumetric mean velocity

〈u〉
V
(t) =

1

V

∫

V

u (x, t) dV, (13)

is obtained by averaging the velocity field over the entire computational do-

main. Similar decompositions can be written for the non-linear term S,

pressure gradient g, and immersed boundary forcing fu terms. Substituting

the above decompositions in Eqs. (9) and (10), followed by averaging over the

entire computational domain yields the volume averaged mass and momen-

tum conservation equations. Since the volumetric means are independent

of spatial location, mean mass conservation is trivially satisfied. The mean
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momentum balance in the whole domain is

ρf
d 〈ui〉V
dt

= −〈gIBM,i〉V + 〈fu,i〉V , (14)

where the volume integrals of convective and diffusive terms are zero because

of periodic boundary conditions. The mean IB forcing term 〈fu〉V is computed

by volume–averaging the IB force specified by Eq. 11 over the region V. The
mean pressure gradient 〈gIBM〉V is computed such that we obtain the desired

flow rate.

Evolution equations for the fluctuating variables are derived by subtract-

ing Eq. (14) from Eq. (10). The resulting equations are solved using a pseudo-

spectral method, with Crank-Nicolson scheme for the viscous terms, and

an Adams-Bashforth scheme for the convective terms. A fractional time-

stepping method that is based on Kim and Moin’s approach (Kim and Moin,

1985) is used to advance the fluctuating velocity fields in time. The principal

advantage of the PUReIBM approach is that it enables the use of regular

Cartesian grids to solve for flow past arbitrarily shaped moving bodies with-

out the need for costly remeshing.

The salient features that distinguish PUReIBM from other immersed

boundary method approaches (including the original implementation of Yu-

sof (1996)) are as follows:

1. Uncontaminated fluid: In PUReIBM the immersed boundary (IB) forc-

ing is solely restricted to those grid points that lie in the solid phase,

and therefore the flow solution in the fluid phase is uncontaminated

by the IB forcing. Consequently the velocity and pressure in the fluid

phase is a solution to the unmodified Navier-Stokes equations (in con-

trast to IB implementations that smear the IB forcing on to grid points
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in the fluid phase adjoining solid boundaries, resulting in solution fields

that do not correspond to unmodified Navier–Stokes equations).

2. Reconcilable: In PUReIBM the hydrodynamic force experienced by

a particle is computed directly from the stress tensor at the particle

surface that is obtained from this uncontaminated fluid flow solution

(in contrast to IB implementations that calculate the hydrodynamic

force from the IB forcing field). This feature of PUReIBM enables us

to directly compare the DNS solution with any random-field theory of

multiphase flow.

4. Validation

The PUReIBM PR–DNSmethodology has been extensively validated (Garg

et al., 2010b; Tenneti et al., 2011) by comparing the drag force obtained from

PUReIBM with available experimental and simulation data in the literature

in a comprehensive suite of test cases:

1. Drag acting on a single sphere (Garg et al., 2010b; Garg, 2009) with

experimental correlation of Schiller and Nauman (1935)

2. Drag acting on simple cubic and face centered cubic arrangements (Ten-

neti et al., 2011) of particles in Stokes flow regime with those reported

by Zick and Homsy (1982) using the Boundary Integral method (semi–

analytic solution)

3. Drag acting on simple cubic (SC) and face centered cubic (FCC) ar-

rangements (Tenneti et al., 2011) of particles at moderate Reynolds

numbers with the results published by Hill et al. (2001b) using lattice

Boltzmann method (LBM)
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(a) (b)

Figure 4: (a) Variation of the coefficient of pressure Cp along the surface of the sphere.

Symbols are the data obtained from PUReIBM simulations for a Reynolds number of

10, while the solid line is that reported in the book authored by Clift, Grace and Weber

(CGW) Clift et al. (1978). (b) Comparison of the velocity profile in a square duct obtained

from PUReIBM simulations at a Reynolds number of 20 with analytical solution Cornish

(1928). It is worthwhile to note that the walls are generated using the immersed boundary

method.

4. Mean drag acting on a random arrangement Tenneti et al. (2011) of

particles in the Stokes flow regime with the results published by Hill

et al. (2001a) and van der Hoef et al. (2005) using LBM

5. High Reynolds number flow past random arrays of monodisperse spheres

with ANSYS–FLUENT CFD package

In addition to the comprehensive validation of the PUReIBM method (Ten-

neti et al., 2011; Garg et al., 2010b) , we present selected additional validation

tests to establish the numerical convergence and accuracy of PUReIBM near

solid boundaries in Fig. 4. The first plot (see Fig. 4(a)) shows a comparison

of the pressure coefficient along the surface of a sphere obtained from our
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PR–DNS with that reported in the book of Clift et al. (1978) (CGW) for an

isolated sphere at a Reynolds number of 10. Figure 4(a) shows an excellent

agreement of the pressure profile on the surface of the sphere with the data

reported in CGW. The second plot (see Fig. 4(b)) shows a comparison of the

velocity field in a square duct at a Reynolds number of 20 with the analytical

solution given by Cornish (1928). We can see that the velocity profile ob-

tained from PUReIBM is numerically converged and accurate. These plots

show that in addition to getting the total drag correct, our method computes

the correct contributions of pressure and viscous drag forces. In the follow-

ing section we describe the simulation setup used to compute the level of

gas–phase velocity fluctuations and also discuss the choice of the numerical

parameters needed to ensure numerically converged results.

5. Simulation Setup

In our simulation setup the particles are held stationary and a steady flow

is established by imposing a pressure gradient that corresponds to the desired

mean flow Reynolds number. A typical simulation of flow past random ar-

rangement of particles with contours of local kinetic energy (k(f) =
1

2
u′′

i
(f)

u′′

i
(f)

)

normalized by the mean energy are shown in Fig. 5. In all the simulations,

mean flow is directed along the positive x–axis.

For flow past homogeneous particle assemblies, a Reynolds number based

on the magnitude of mean slip velocity between the two phases is defined as

Rem =
|〈W〉| (1− φ) D

νf
, (15)

where |〈W〉| is the magnitude of the mean slip velocity, D is the particle

diameter and φ is the solid volume fraction. The mean slip velocity 〈W〉 =
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Figure 5: Contours of local kinetic energy (k(f) =
1

2
u′′

i
(f)

u′′

i
(f)

) in the gas–phase normal-

ized by the mean energy for steady flow past random assembly of spheres at a solid volume

fraction of 0.05 and mean flow Reynolds number of 50.

〈

u(s)
〉

−
〈

u(f)
〉

is defined as the difference between the average solid and

gas–phase velocities. In the simulations, the mean flow Reynolds number (or

the desired flow rate) is specified as an input and since for fixed assemblies
〈

u(s)
〉

= 0, the desired fluid-phase mean velocity
〈

u(f)
〉

is known in terms of

the input Reynolds number and other physical properties. The mean pressure

gradient evolves in time until it attains the value required to drive the fluid

at the desired flow rate.

Particles are initialized corresponding to a specified mean solid volume

fraction φ. The particles are fixed in a random equilibrium configuration they

attain following elastic collisions (in the absence of ambient fluid) starting

from a lattice arrangement with a Maxwellian velocity distribution. The elas-

tic collisions are simulated using a soft–sphere discrete element model (Cun-

22



dall and Strack, 1979; Garg et al., 2010a). The pair correlation function at

equilibrium specifies the particle configuration for random assemblies.

The computational domain used is a cube with sides of length L which is

discretized using a regular Cartesian grid with M grid cells in each direction

so that ∆x = L/M is the size of each grid cell. The spatial resolution is rep-

resented by the number of grid cells across the diameter of a particle, which

is denoted Dm = D/∆x. For random arrangements of particles, the ratio

L/D is an independent parameter. The minimum box length is determined

by the criterion that the spatial autocorrelation of flow statistics must decay

to zero within the box. This is to prevent the periodicity of the numerical

solution from leading to unphysical flow fields. The numerical parameter

L/D also determines the number of particles Np in the box such that for a

given volume fraction φ it is given by

Np =
6φ

π

(

L

D

)3

. (16)

The various numerical parameters used in the simulations are reported in

Table 1.

All simulations start with the initial condition of uniform fluid velocity.

We have verified that starting the simulations with a homogeneous isotropic

turbulent velocity field does not affect the steady value of kf attained by

the system (Mehrabadi et al., 2012). Therefore the steady state value of

kf obtained in a fixed particle assembly depends only on the solids volume

fraction and the mean flow Reynolds number. The grid resolutions used in

the PUReIBM simulations have been chosen such that they yield numerically

converged solutions. For instance, the convergence characteristics of kf/Ef

with respect to the grid resolution Dm for a solid volume fraction of 0.3 and
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φ Np M Dm L/D

0.1 80/ 41 5 20/30 7.5/ 6

0.2 161/ 34 5 20/40 7.5/ 4.5

0.3 71/ 26 5 30/50 5/ 3.6

0.4 95/ 20 5 30/60 5/ 3

0.5 61/– 5 40/– 4/–

Table 1: Numerical parameters (number of particles Np, number of MIS M, particle

diameter in grid units Dm and the ratio of the length of the box to the particle diameter

L/D) used for random arrays in PUReIBM simulations. Different numerical parameters

are used for Rem ≤ 100 and Rem > 100. These are separated by “/”. Numbers before the

“/” correspond to Rem≤ 100 while numbers after the “/” correspond to Rem> 100. At

volume fraction 0.5 PUReIBM simulations are performed only up to a Reynolds number

of 100.
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Figure 6: Convergence characteristics of kf/Ef with grid resolution D/∆x for flow past

random arrays of spheres at φ = 0.3 and Rem = 20. The error bars denote 95% confidence

intervals in the estimation of the average kf from 5 independent realizations.

mean flow Reynolds number of 20 is shown in Fig. 6. The value of kf/Ef

averaged over 5 independent realizations clearly shows numerical convergence

as the grid resolution is increased.

Besides convergence with grid resolution, it is also important to check

whether the box size is adequate or not. The box size is deemed adequate if

the two–point correlation functions in the fluid–phase decay to zero within

the box length. To check this, the two–point velocity correlation function has

been computed for the highest Reynolds number simulated. The fluid–phase

velocity autocorrelation ρu (r) is defined as

ρu (r) =

〈

If (x)u
′′(f) (x) · If (x+ r)u′′(f) (x+ r)

〉

〈Ifu′′(f) · u′′(f)〉 . (17)

Figure 7(a) shows convergence of the fluid–phase velocity autocorrelation

function with grid resolution as well as box size for a random configuration

of particles at a solid volume fraction of 0.2 and Reynolds number of 20. The
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Figure 7: (a) Convergence of the fluid–phase velocity autocorrelation function with grid

resolution as well as box size for a random configuration of particles at a solid volume

fraction of 0.2 and Reynolds number of 20. (b) Decay of the fluid velocity autocorrelation

function obtained from PUReIBM simulation of steady flow past a random configuration

of spheres at a solid volume fraction of 0.2 and mean flow Reynolds numbers 20 (squares)

and 300 (triangles). In these simulations L/D ratios of 6 and 4.5 are used for Reynolds

numbers 20 and 300 respectively.

autocorrelation function has also been computed for the highest Reynolds

number that we simulated and is shown in Fig. 7(b). These results clearly

indicate that the numerical parameters used in our simulation are adequate

to perform numerically converged simulations. We now present the results

obtained from PUReIBM simulations of flow past monodisperse fixed particle

assemblies.
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Figure 8: Variation of the turbulent kinetic energy normalized by Ef = 1
2

〈

u
(f)

〉

·
〈

u
(f)

〉

with Rem and φ.Figure 8(a) shows the behavior of kf/Ef with φ for different mean flow

Reynolds numbers while Fig. 8(b) shows the behavior of kf/Ef with Rem for different

solid volume fractions.

6. Results

We performed PUReIBM DNS of flow past fixed assemblies of monodis-

perse spheres over a wide range of solids volume fraction (0.1 ≤ φ ≤ 0.5) and

mean flow Reynolds numbers (0.01 ≤ Rem ≤ 300). Using this data a new

correlation for the average fluid–particle force in fixed beds has been pro-

posed by Tenneti et al. (2011). Here we quantify the strength of gas–phase

velocity fluctuations in terms of φ and Rem.

Figure 8(a) shows the variation of kf/Ef with solids volume fraction for

different mean flow Reynolds numbers while Fig. 8(b) shows the variation

of kf/Ef with mean flow Reynolds number for different solid volume frac-

tions. As evident from Fig. 8(a), the kinetic energy in fluctuating motions

normalized by the mean energy in the gas–phase increases dramatically with

volume fraction. This behavior is expected because, as the volume fraction
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increases, the space available to the gas decreases. Owing to conservation of

mass, the velocity of the gas increases thus causing kf/Ef to increase with

volume fraction. As shown in Fig. 8(b), at a given volume fraction kf/Ef de-

creases rapidly with increasing mean flow Reynolds number up to Rem = 50

and beyond Rem = 50 it has a weak power law dependence on Rem. This

behavior is a result of the normalization of kf by Ef . It implies that the

variance of gas velocity increases approximately as the square of the mean

flow Reynolds number. Since the total kinetic energy of the gas increases

with increasing mean flow Reynolds number, we expect the strength of gas–

phase velocity fluctuations also to increase. Using the data obtained from

PUReIBM DNS we found that the following function fits the data with an

average deviation of 5%:

kf
Ef

(φ,Rem) = 2φ + 2.5φ(1− φ)3 exp
(

−φRe1/2m

)

, 0.1 ≤ φ ≤ 0.5,

0.01 ≤ Rem ≤ 300.

(18)

As shown in Eq. 18, the correlation is proposed from simulations in the range

0.1 ≤ φ ≤ 0.5 and 0.01 ≤ Rem ≤ 300. The value of kf/Ef from Eq. (18)

tends to appropriate values in the limit of infinite dilution and creeping flow.

In the limiting case of infinite dilution i.e. φ → 0 the value of kf/Ef is

zero. This limiting value is consistent with the fact that in the absence of

particles the flow field is uniform. In the Stokes flow regime (Rem → 0) the

value of kf/Ef reaches an asymptote and depends only on the solid volume

fraction. This behavior is consistent with the fact that the mean drag (which

is shown to be the source of kf in the next section) acting on the particles is

linear in the Stokes flow regime and thus the normalized quantity kf/Ef is
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Figure 9: State of anisotropy of the gas–phase Reynolds stress tensor in the Lumley plane.

Color of the symbol indicates the volume fraction going from φ = 0.1 (blue) to φ = 0.5

(red). For each volume fraction the invariants of the gas–phase Reynolds stress tensor are

shown: Rem = 0.01 (squares), Rem = 20 (circles), Rem = 100 (diamonds) and Rem = 200

(triangles) are shown.

independent of Reynolds number.

In addition to kf we also quantified the state of anisotropy of the fluid

phase Reynolds stress tensor. To quantify the state of anisotropy of the fluid

phase Reynolds stress, the invariants ξ and η of the normalized Reynolds

stress anisotropy tensor, which is defined as

bij =
1

2kf

〈

Ifui
′′(f)uj

′′(f)
〉

− 1

3
δij,

are computed. The invariants are defined following Lumley and Newman

(1977) as 6η2 = bijbij and 6ξ3 = bijbjkbki. The state of anisotropy of the

gas–phase Reynolds stress tensor for various volume fractions and mean flow

Reynolds number is plotted on the ξ–η plane in Fig. 9. The key finding

here is that at every Reynolds number the level of anisotropy decreases with

increasing volume fraction. In other words, the gas–phase Reynolds stress
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tensor is more anisotropic at dilute volume fractions than at denser volume

fractions.

Although our study is for homogeneous gas–solid suspensions, the depen-

dence of kf on the solid volume fraction and mean flow Reynolds number has

implications for transport of the gas–phase Reynolds stress in inhomogeneous

flows also. The strong dependence of kf on φ suggests that the transport

of kf could be significant in statistically inhomogeneous flows with spatial

variation of φ. Moreover, the dependence of kf on φ and Rem (cf. Eq. (18))

obtained in this section has certain implications for modeling the dissipa-

tion of kinetic energy in the gas–phase, which are discussed in the following

section by employing a scaling analysis.

7. Implications for modeling the dissipation of kinetic energy

In this simple flow the steady kf results from a balance of interphase

transfer of kinetic energy and dissipation of kinetic energy in the gas–phase.

If we are able to obtain the correct scaling of each of these terms with φ and

Rem then we can explain the dependence of kf on φ and Rem. For statistically

homogeneous flows the conservation law (Pai and Subramaniam, 2009; Ying

and Subramaniam, 2007) for kf is:

∂

∂t
{(1− φ) ρfkf} = −

〈

ui
′′(f)τjin

(s)
j δ

(

x− x(I)
)

〉

+

〈

ui
′′(f)∂ (Ifτji)

∂xj

〉

. (19)

In this equation τji is the fluid phase stress tensor (cf. Appendix A),

δ
(

x− x(I)
)

is a generalized delta function at the fluid–particle interface x(I),

and n(s) is the unit normal vector pointing outward from the solid phase into

the fluid phase. The second term on the right hand side is the covariance
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of the fluctuating fluid velocity field and the gradient of the stress tensor in

the fluid phase. For statistically homogeneous flows this term simplifies (cf.

Appendix Appendix A) to −2µf 〈Ifsijsij〉, where 2µf 〈Ifsijsij〉 can be iden-

tified as the dissipation that is strictly non negative. Thus the conservation

equation for kf simplifies to

∂

∂t
{(1− φ) ρfkf} = −

〈

ui
′′(f)τjin

(s)
j δ

(

x− x(I)
)

〉

− 2µf 〈Ifsijsij〉 . (20)

Here sij =
1

2

(

∂ui
′′(f)

∂xj
+

∂uj
′′(f)

∂xi

)

is the strain rate of the fluctuating fluid

velocity field and µf is the dynamic viscosity of the fluid–phase.

The first term on the right hand side of Eq. (20) represents the interphase

transfer of kinetic energy denoted Πkf so that

Πkf = −
〈

ui
′′(f)τjin

(s)
j δ

(

x− x(I)
)

〉

, (21)

which is non–zero at the fluid–solid interface owing to the Dirac delta function

at x(I). Ying and Subramaniam (2007) showed that for fixed particle assem-

blies the interphase kinetic energy transfer term simplifies to 〈W〉 ·
〈

S
(f)
M

〉

,

where 〈W〉 =
〈

u(f)
〉

−
〈

u(s)
〉

is the mean slip velocity between the solid and

the fluid phases, and
〈

S
(f)
Mi

〉

= −
〈

τjin
(s)
j δ

(

x− x(I)
)

〉

is the average mo-

mentum transfer between the fluid and the solid phase. This simplification

is possible because particles in a fixed bed are stationary and the fluid velocity

field satisfies the no–slip condition at the particle surfaces, as a consequence

of which u′′(f) = −
〈

u(f)
〉

at every point on the fluid–particle interface in

Eq. 21. For random assemblies, since the mean slip velocity is aligned with

the mean interphase momentum transfer (Hill et al., 2001b; Tenneti et al.,

2011), Πkf is positive and represents a source of gas–phase velocity fluctu-

ations. The second term (2µf 〈Ifsijsij〉) on the right hand side of Eq. (20)
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is usually expressed as ρf (1− φ) εf where εf is the dissipation of kf . Since

sijsij is always positive, εf represents a sink of kf .

An expression for the interphase transfer of kinetic energy Πkf can be

derived by expressing the interphase momentum transfer in terms of the

average drag force acting per particle:

Πkf = 〈W〉 ·
〈

S
(f)
M

〉

=
18φ (1− φ)2 µf

D2
F (φ,Rem) |〈W〉|2 . (22)

In the above expression, F (φ,Rem) is the normalized average drag force per

particle given by

F =
|〈F〉|
FStokes

, (23)

where 〈F〉 is the average hydrodynamic force per particle and FStokes =

3πµfD (1− φ) |〈W〉| is the Stokes drag acting on an isolated sphere mov-

ing with a slip velocity of (1− φ) |〈W〉|. The expression for the source of kf

due to interface transfer of kinetic energy, derived in Eq. (22) is similar to

the one derived by Crowe (2000). While Crowe (2000) used the single sphere

drag correlation for F (φ,Rem), here we obtain this value directly from the

particle–resolved DNS. An accurate correlation for F (φ,Rem) has been de-

veloped using the data obtained from PUReIBM simulations (Tenneti et al.,

2011). The drag correlation is summarized below for the sake of complete-

ness. The average normalized drag force acting per particle in flow past a

random assembly of monodisperse spheres is given by

F (φ,Rem) =
Fisol (Rem)

(1− φ)3
+ Fφ (φ) + F

φ,Rem (φ,Rem) (24)

where, Fisol is the drag force acting on an isolated sphere moving in an un-

bounded medium. We used the drag correlation proposed by Schiller and
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Nauman (1935) to get the drag on an isolated sphere. The remaining two

terms in Eq. 24 are given by

Fφ (φ) =
5.81φ

(1− φ)3
+ 0.48

φ1/3

(1− φ)4
,

F
φ,Rem (φ,Rem) = φ3Rem

(

0.95 +
0.61φ3

(1− φ)2

)

.

At steady state the source and sink of kinetic energy must balance each

other i.e.,

Πkf = ρf (1− φ) εf . (25)

To our knowledge, all the turbulence models for multiphase flows use a Kol-

mogorov scaling for the dissipation term in a manner similar to single phase

turbulence models i.e., εf ∼ k
3/2
f /lK . While in single–phase turbulence the

length scale lK in this expression corresponds to eddies in the inertial sub-

range, the corresponding interpretation in gas–solids flow is not clear. Note

that the validity of the Kolmogorov scaling rests on the energy cascade hy-

pothesis with a constant dissipation rate in the inertial subrange. These

assumptions may not hold in gas–solids flow. An alternative expression for

the dissipation rate in single–phase turbulence is εf ∼ 2νfkf/l
2
T , where lT is

the Taylor microscale and νf is the kinematic viscosity of the fluid–phase.

This expression can be generalized to any random velocity field with a finite

spatial autocorrelation length. In the following we show that the Kolmogorov

scaling does not yield a plausible behavior for lK with Rem for gas–solid flows

with finite sized particles, whereas the behavior of lT is reasonable.

Using the Kolmogorov scaling for the dissipation term and substituting
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εf = k
3/2
f /lK in Eqs. (25) and (22) implies the following expression for lK/D:

lK
D

=

(

kf
Ef

)3/2 (

36
√
2φ (1− φ)2

F (φ,Rem)

Rem

)−1

. (26)

Similarly, using the Taylor microscale scaling for the dissipation term and

substituting εf = 2νfkf/l
2
T in Eqs. (25) and (22) results in the following

expression for lT/D:

lT
D

=

(

kf
Ef

)1/2

(18φ (1− φ)F (φ,Rem))
−1/2 . (27)

The behavior of the length scales lK and lT with solids volume fraction

and mean flow Reynolds number can be inferred by substituting Eqs. (18)

and (23) in Eqs. (26) and (27) respectively. The variation of lK and lT with

solid volume fraction and Reynolds number are compared in Fig. 10. The

behavior of length scale lK obtained by modeling the dissipation term by Kol-

mogorov scaling (εf ∼ k
3/2
f /lK) is shown by dashed lines. This length scale

increases with mean flow Reynolds number and decreases with volume frac-

tion. The behavior of the length scale lT obtained using a Taylor microscale

scaling (εf ∼ 2νfkf/l
2
T ) is shown in Fig. 10 using solid lines. This length scale

decreases with both mean flow Reynolds number and solids volume fraction.

For laminar flow past a single sphere, the length scale on which the ve-

locity gradients vary is of the order of the boundary layer thickness δ/D

which varies inversely with
√
Rem. We expect this length scale to decrease

with increasing solids volume fraction. Since the hypothesis of energy cas-

cade probably does not hold in homogeneous gas–solid flow with finite–sized

particles, the applicability of the Kolmogorov scaling is questionable, as also

evidenced by the behavior of lK with Rem. On the other hand, the scaling
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Figure 10: Variation of dissipation length scales with Reynolds number for solid volume

fractions 0.1 and 0.2. Dashed lines are obtained by modeling the dissipation term as

k
3/2
f /lK while the solid lines are obtained by modeling the dissipation as 2νfkf/l

2
T .

of lT indicates that the Taylor microscale is a better choice to model the dis-

sipation term in gas–solid flows with finite sized particles. However, it must

be noted that neither lK nor lT may correspond to the exact length scales of

dissipative motions in gas–solids flow.

8. Eddy viscosity for gas–solid flow

In several studies the gas–phase Reynolds stress term is modeled in a

fashion similar to single–phase turbulence i.e.,

〈

u′′

i
(f)

u′′

j
(f)

〉

=
2

3
δij



kf + νt
∂
〈

u
(f)
k

〉

∂xk



− νt





∂
〈

u
(f)
i

〉

∂xj

+
∂
〈

u
(f)
j

〉

∂xi



 .

In this model νt is the eddy viscosity for gas–solid flow and it depends on the

turbulent kinetic energy (kf) and dissipation rate (εf) through the relation
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Figure 11: Behavior of the ratio k2f/ (εfνf ) with mean flow Reynolds number for different

solid volume fractions.

νt = Cµk
2
f/εf . In this relation Cµ is a model constant and usually the value

for the constant associated with the k− ε models of single–phase turbulence

are used in gas–solid flows as well. Since we have quantified both kf (cf.

Eq. (18)) and εf (cf. Eq. (25)) using particle–resolved DNS, we can infer an

eddy viscosity for gas–solid flow as a function of solid volume fraction and

mean flow Reynolds number. The ratio k2
f/ (εfνf ) is shown as a function

of Rem for different φ in Fig. 11. We see that the ratio k2
f/ (εfνf ) increases

with both solid volume fraction and mean flow Reynolds number. This de-

pendence on the mean flow Reynolds number indicates that the transport of

gas–phase Reynolds stress can become important if there are large gradients

in the mean flow and solid volume fraction, as found in many multiphase flow

applications. Further, the PR–DNS of Mehrabadi et al. (2012) shows that

the value of kf in freely evolving gas–solid suspensions is very close to that

observed in fixed–beds. This observation confirms the applicability of the
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proposed eddy viscosity model in device–scale CFD simulations of gas–solid

flow applications.

9. Conclusions

In this work we quantified the strength of gas–phase velocity fluctuations

in gas–solid flows as a function of solids volume fraction and Reynolds num-

ber based on mean slip velocity using PR–DNS of steady flow past fixed

particle assemblies. We employ the Particle–resolved Uncontaminated–fluid

Reconcilable Immersed Boundary Method (PUReIBM) to perform PR–DNS

of flow past fixed particle assemblies. We observe that the presence of parti-

cles generates high level of fluctuations in the gas velocity. The kinetic energy

in the fluctuating motions (kf) can be as high as the kinetic energy in the

mean motion (Ef), especially for systems with higher solid volume fraction

greater than 0.4. The ratio kf/Ef increases with the solids volume fraction

and decreases with mean flow Reynolds number. We observe that the gas–

phase Reynolds stress in the bed is anisotropic at all Reynolds numbers and

volume fractions. Based on the PUReIBM PR–DNS data, we propose a cor-

relation for kf/Ef in terms of solid volume fraction and mean flow Reynolds

number. Our results indicate that the use of a length scale analogous to

Taylor microscale is appropriate to model the dissipation term in gas–solid

flows. Using the PUReIBM PR–DNS data for kf and εf we infer an eddy

viscosity that can be used in predictive CFD simulations of gas-solid flow.
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Appendix A. Simplification of the covariance of fluctuating veloc-

ity and gradient of stress tensor to dissipation in

statistically homogeneous gas–solid flow

As discussed in section 7, the conservation equation for kf in statistically

homogeneous flows is written as

∂

∂t
{(1− φ) ρfkf} = −

〈

ui
′′(f)τjin

(s)
j δ

(

x− x(I)
)

〉

+

〈

ui
′′(f) ∂ (Ifτji)

∂xj

〉

.

(A.1)

In this equation τji is the fluid phase stress tensor given by

τji = −pδji + µf

(

∂ui

∂xj
+

∂uj

∂xi

)

,

where p and u are the instantaneous pressure and velocity fields respectively.

The second term on the right hand side is the covariance of the fluctuating

fluid velocity field and the gradient of the stress tensor in the fluid phase.

Using the product rule this term can be written as
〈

ui
′′(f) ∂ (Ifτji)

∂xj

〉

=

〈

∂

∂xj

(

Ifui
′′(f)τji

)

〉

−
〈

Ifτji
∂ui

′′(f)

∂xj

〉

. (A.2)

Commuting the gradient and averaging operators and invoking the assump-

tion of statistical homogeneity, the first term on the right hand side of the

above equation simplifies to zero. The second term on the right hand side

can be further simplified by considering the definition of the stress tensor:

τji
∂ui

′′(f)

∂xj

=

(

−pδji + µf

(

∂ui
′′(f)

∂xj

+
∂ui

′′(f)

∂xj

))

∂uj
′′(f)

∂xi

(A.3)

Since the fluctuating velocity field is divergence free, the pressure term is

zero. So the above equation reduces to:

τji
∂ui

′′(f)

∂xj
= µf

[

∂ui
′′(f)

∂xj

∂ui
′′(f)

∂xj
+

∂2

∂xi∂xj

(

ui
′′(f)uj

′′(f)
)

]

= 2µfsijsij , (A.4)
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where, sij =
1

2

(

∂ui
′′(f)

∂xj
+

∂uj
′′(f)

∂xi

)

. Therefore, the second term on the right

hand side of Eqs. (A.1) and (19) simplifies to
〈

ui
′′(f)∂ (Ifτji)

∂xj

〉

= −2µf 〈Ifsijsij〉 , (A.5)

which is strictly negative and can be identified as the dissipation rate of kf

in statistically homogeneous gas–solid flow.
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