Integrating Operations Simulation Results with an Immersive Virtual Reality Environment

Denis V. Dorozhkin Judy M. Vance

Iowa State University

Mechanical Engineering Department

Virtual Reality Applications Center

Marco Lemessi Gordon D. Rehn

Industrial Engineering,
Simulation Group
Deere & Company

December 6, 2004

Objective

To develop a post-processed link between a discrete event simulation of an assembly line and a fully-immersive virtual reality (VR) environment.

Definitions

- **Discrete-event simulation** a simulation in which the state of a model changes at only a discrete, but possibly random, set of simulated time points (T. Schreiber, 1997).
- Virtual Reality a computer-generated three-dimensional environment, which can be interactively manipulated by the users (Barfield & Furness, 1995).

Assembly Line Simulation at Deere

ALiSS (Assembly Line Solution Set) is a discrete-event simulation model developed by Deere & Co., which relies on the following components for its functionality:

- Wolverine's SLX (Simulation Language with Extensibility) for its simulation engine capabilities
- Microsoft's Excel for the user interface
- Wolverine's Proof Animation software for postprocessed animation of the simulation results.

Why switch to VR?

Limitations of the traditional simulation animation packages:

- Two-dimensional, schematic layouts
- Simple object geometry
- Limited object interrogation
- No direct human-model interaction

Current State of VR simulation

VR-Fact – virtual environment for modeling and designing factories and shop floors (Kesavadas and Ernzner, University of Buffalo).

VRFactory – an interface to a commercial discrete event simulation software (SLAM II) (Vance and Kelsick, Iowa State University).

Expansion of ALiSS to VR

- A new, independent SLX module has been developed and integrated into the ALiSS existing code.
- The new module
 - selects relevant information from ALiSS
 - passes it to an output ASCII file (VRF file)
- Selected information includes:
 - assemblers starting/ending tasks
 - parts arriving/leaving work stations
 - status of assemblers, parts, and vehicles

The immersive VR environment

General-purpose fully-immersive VR application for interactive post-processing the results of a discrete-event simulation created by ALiSS.

Capable of investigating a wide variety of assembly lines and corresponding scenarios.

VR Components

Simulation Data

(VRF file)

Path
Layout
Data

Geometry Data

(CAD models)

Main Application Modules

- Graphics
- Data Processing
- Logical
- Interaction

Application Testing

- A tractor assembly line was chosen to test the postprocessed link between an ALiSS simulation and the immersive VR environment.
- The focus of the analysis is on a single station, where transaxle and frame are assembled to form the tractor chassis.

Conclusions and Future Work

The next project phase will effectively insert dynamic user input as a part of the simulation model.

The project long-term goals are:

- Pave new avenues for concurrent product and process design
- Create a virtual assembly training process and a virtual manufacturing laboratory
- Increase the 'speed to market' of new products.

Acknowledgements

Deere & Company

Virtual Reality Applications Center
Iowa State University
www.vrac.iastate.edu

