

Denis V. Dorozhkin Judy M. Vance

CELIN

REALITY

Iowa State University Mechanical Engineering Department Virtual Reality Applications Center Marco Lemessi Gordon D. Rehn

Industrial Engineering, Simulation Group Deere & Company

JOHN DEERE

JIPTUAL

APPLICATIONS

Objective

 To develop a Virtual Reality training environment and laboratory for Production Assemblers with the aid of concurrent operations simulation

CATIONS C

Definitions

- Discrete-event simulation a simulation in which the state of a model changes at only a discrete, but possibly random, set of simulated time points (T. Schriber, 1997)
- Virtual Reality a computer-generated threedimensional environment, which can be interactively manipulated by the users (Barfield & Furness, 1995)

ATIONS

Assembly Line Simulation at Deere

- ALiSS (Assembly Line Solution Set) is a discrete-event simulation model developed by Deere & Co., which relies on the following components for its functionality:
 - Wolverine's SLX (Simulation Language with Extensibility) for its simulation engine capabilities
 - Microsoft's Excel for the user interface
 - Wolverine's Proof Animation software for postprocessed animation of the simulation results

ATIONS

Why switch to VR?

- Limitations of the traditional simulation animation packages:
 - Two-dimensional, schematic layouts
 - Simple object geometry
 - Limited object interrogation
 - No direct human-model interaction

CATIONS

Current state of VR simulation

ATIONS

JOHN DEERE

VR-Fact – virtual environment for modeling and designing factories and shop floors (Kesavadas and Ernzner, University of Buffalo).

VRFactory – an interface to a commercial discrete event simulation software (SLAM II) (Vance and Kelsick, Iowa State University).

ALiSS – VR Coupling

- A new, independent SLX module has been developed and integrated into the ALiSS existing code.
- The new module selects relevant information from ALiSS and communicates it to the VR application:
 - assemblers starting/ending tasks
 - parts arriving/leaving work stations
 - status of assemblers, parts, and vehicles

ATIONS

Concurrent simulation

- Synchronization is vital to fluent interaction between commercial DES and VR
- Number of discrete events and the amount of information passed varies significantly
- Self-adapting buffer size is used

CATIONS

Application Features

- Real-time generation of simulation results
- Ability to modify an assembler's behavior
- Comprehensive simulation status information
- Complete control over simulation flow

ATIONS

Testing

- A tractor assembly line was chosen to test the concurrent link between an ALiSS simulation and the immersive VR environment.
- The focus of the analysis is on a single station, where transaxle and frame are assembled to form the tractor chassis.

ATIONS

Developed application

JOHN DEERE

UAL

CATIONS C

Human Computer Interaction IOWA STATE UNIVERSITY

Acknowledgements

Deere & Company

Virtual Reality Applications Center Iowa State University www.vrac.iastate.edu

ATIONS C