Virtual Reality
Hype or a Technology that can do “real work”?

Dr. Judy M. Vance
Virtual Reality Applications Center (VRAC)
Mechanical Engineering Department
Iowa State University
Ames, IA
Virtual Reality
Virtual Reality
Virtual Reality

Images courtesy of Idaho National Labs

Virtual Reality Applications Center
University of Minnesota
November 4, 2015
Virtual Reality

Image courtesy of Case New Holland
Augmented Reality
Augmented Reality
Virtual Reality Applications Center
Virtual Reality Applications Center
Virtual Reality Applications Center
Terminology

- Virtual Reality (VR)
- Virtual Environments (VE)
- Augmented Reality (AR)
- Immersive Technology
- Immersive Computing Technology (ICT)
Virtual Reality

A medium composed of interactive computer simulations
Virtual Reality

A medium composed of interactive computer simulations that sense the participant’s position and actions
Virtual Reality

A medium composed of interactive computer simulations that sense the participant’s position and actions and replace or augment the feedback to one or more senses.
Virtual Reality

A medium composed of interactive computer simulations that sense the participant’s position and actions and replace or augment the feedback to one or more senses, giving the feeling of being mentally immersed or present in the simulation.

Augmented Reality

A technology that superimposes a computer-generated image on a user’s view of the real world, thus providing a composite view.
What makes VR unique?

- Human control of the view
- Ability to naturally interact with the computer images
Access this video here:
https://www.youtube.com/watch?v=BrvwaplZXIw
Access this video here:
https://www.youtube.com/watch?v=lL2Ha2Ymht4

Asymmetric Interfaces for Bimanual Virtual Assembly with Haptics
To Make it Work

- Position Tracking Technology
- Display Technology
- Sensory Feedback
To Make it Work

- Position Tracking Technology
- Display Technology
- Sensory Feedback
A Head-mounted Three Dimensional Display 1968

Sutherland’s HMD

Mechanical Tracking

Sutherland’s HMD

Ultrasonic Tracking

Consumer Position Trackers

Wii
Consumer Position Trackers

Kinect

Virtual Reality Applications Center
University of Minnesota
November 4, 2015
Optical Tracking
retroreflective balls
Brain Computer Interface

Inertial Tracking

Magnetic Tracking

Acoustic Tracking

Mechanical Tracking
To Make it Work

๏ Position Tracking Technology
๏ Display Technology
๏ Sensory Feedback
Multiple Projection Surfaces

C6
Multiple Projection Surfaces

C6
Multiple Projection Surfaces

- 2 walls, 1 floor
- 3 stereo projectors
- Optical tracking
- Wii remote wand

METaL
MULTIMODAL EXPERIENCE TESTBED AND LABORATORY

Virtual Reality Applications Center
University of Minnesota
November 4, 2015
CAVE

Access this video here:
https://www.youtube.com/watch?v=LyLuOuKM0Wc
Projection Systems

Reality Deck
Stony Brook University
417 LCD displays
Projection Systems

AlloSphere
University of Santa Barbara
14 projectors
Head Mounted Display (HMD)

Image courtesy of Lockheed Martin
See Through HMD
Cell Phone and Tablet AR
Cell Phone and Tablet AR
To Make it Work

- Position Tracking Technology
- Display Technology
- Sensory Feedback
Sound

- Increase awareness of surroundings
- Cue visual attention
- Convey a variety of complex information without taxing the visual system
- Enhances the visual experience
Object contact

http://people.rennes.inria.fr/Anatole.Lecuyer/vrst_sreng.avi
Haptics

To touch
Combination of Real and Virtual

Image courtesy of Ford Motor Co.
Haptics

Access this video here: https://youtu.be/xQxNT1DAoT4
The surprising joy of virtual reality and why it's about to change the world.
By Joel Stein

The Time cover of virtual reality shows Oculus Rift creator floating above a beach.
Facebook closes its $2bn Oculus Rift acquisition. What next?

Social network completes deal announced in March, so what does the future hold for its virtual reality division?

Oculus Rift
Cell Phone HMD

Zeiss Vr ONE Samsung Galaxy S5 Virtual Reality Headset
from Zeiss

Price: $159.99 & FREE Shipping

Only 19 left in stock.
Ships from and sold by Wired Gadgets.

- With Limitless Possibilities With the VR ONE, the smartphone you carry in your pocket can take you to worlds of virtual and augmented reality. With already hundreds of apps available on Google Play and Apple App Store made for mobile VR devices you can simply download and launch the app, lock your smartphone in the VR ONE precision tray and slide it in the VR ONE. Experience VR games, videos, and amazing experiences that were never before possible.

- The Zeiss VR ONE delivers an unrivalled viewing experience with Zeiss precision lenses and the 5.2 inch display of the Galaxy S5 providing stunning and engaging visuals at a mobile-leading resolution. With the VR ONE, the effect is the equivalent of sitting in the best seat of a theatre, being on-stage at a performance with full 360 degree 3D video, and being able to enjoy...
Google Cardboard

Build your own HMD

https://developers.google.com/cardboard/

Construct a VR viewer from everyday items you can find in your garage, online or at your local hardware store.

Here's what you need to get started:
An Industry Case Study: Investigating Early Design Decision Making in Virtual Reality

Leif P. Berg

Observations, interviews, and focus groups were conducted to evaluate the effect of using immersive technology on decision making in early product design.
Piston pumps and motors

We'll drive your vehicle transmission to a new level of performance with our piston pumps and motors. Designed for intelligent vehicle management systems, our range brings you closer to your goals for reduced fuel consumption and high operator comfort.

Trust our compact piston pumps and motors to give your transmission the power it needs with the low emissions that satisfy today's global regulations.

We deliver components and systems for low, medium and high-power applications, including single and dual path propulsion drives and closed loop auxiliary transmissions. Our range is PLUS+1® compliant for smooth, seamless integration in intelligent control systems.

PLUS+1® Compliance

H1 family product brochure
H1 piston pumps and motors technical information
Series 45 open circuit axial piston pumps brochure

Emissions solutions
Our team can help make your machines efficient and productive while meeting new emissions standards.

Your strongest partner
Our proven competencies continue to provide industry-leading products to
Stage 1

Initial Interviews with Design Team

Stage 2

VR Design Review + Focus Group

repeat 3 times

Stage 3

Final Focus Group with Design Team

Design team

- 5 engineers
- Ages 31-42
Siemens Teamcenter PLM Visualization
Table 1. Initial Interview Questions (sample)

- Have you ever heard of virtual reality? If so, what do you know about it?
- Have you ever used a virtual reality system before? If so, when? What was it like?
- Do you see virtual reality being helpful in making decisions? How so?
- What do you think you would be able to do with a virtual reality system?
Table 2. Focus Group Questions (sample)

- How did your design review go?
- What types of questions did you explore?
- Was there anything that was particularly challenging about your session today?
- Did you make any decisions regarding the design?
Goal: better understand the spatial relationships between components during the engagement of two critical subassemblies
Design Review 1 Focus Group

“Looking at certain components [in CAD] they look one size, but they are actually another size.”

“It gave you a perspective of how far to kneel down to see that engagement.”

“Especially the view that you were bringing up while thinking about the clearances and the space within the unit. I didn’t have that same perspective, but when you mentioned that and then I got a chance to look at it I thought – Oh yeah, now I can see it.”
Design Review 2

Goals

1. Examine the working clearances of some internal components

2. Prototype a proposed method of inserting one subassembly into another
Design Review 2 Focus Group

“[this exercise] reinforced the complex movement required to get that [subassembly] installed.”

“If I had a glove instead of a wand [Wii Remote], I may be able to grab the part better.”

“I think we passed the glasses around a little bit more. Or someone would notice something and say – hey what do you think?”

“The wow factor was gone, I felt like it was all business, jumped in [and] looked at what we needed to and got that done.”
Design Review 3

Goals

1. Examine how the layout of an assembly line would impact interactions between the operator, product, and assembly station

2. Evaluate the tooling at the assembly station
Design Review 3 Focus Group

“How far [away] are the bins?” – “about twelve to fourteen inches”

“Those bench tools aren’t going to clog up the workspace as much as I thought.”

“Experiencing it in VR is definitely going to put me ahead of the game. When it comes to going to the supplier, I’m not going to be surprised in what I saw. I have clear expectations of it now.”
Design Review 3 Focus Group

“I thought it was funny that we went through the same meeting yesterday, with everybody’s laptops open, doing other work on the side and not fully engaged, and [got] completely different results.”

“It’s interactive. You’re there. You’re in it. Versus you’re sitting in a conference room around a table [where] it’s too easy to have your laptop open and do some other things. You’re standing up, there’s no surface for your laptop, you’ve got glasses on. It’s just visual and immersive.”
Design Review Summary

○ DR1: Introduced the team to VR

○ DR2: Design changes were made based on what was learned during the VR experience

○ DR3: Design changes were made based on what was learned during the VR experience
Table 3. Final Focus Group Questions (sample)

- Over the course of the visits, do you think your experiences in VR influenced your decision making? If so, how?
- Is this something you could see yourself using for future designs? If so, how?
- Looking back, if you could change one thing about your experiences, what would it be?
- Overall, how was your experience using the virtual reality system?
Final Focus Group

“I think we’ve done a good job explaining the value. . . , but it’s very difficult explaining the experience itself.”

⊙ Interacting with the Wii mote was helpful – but awkward and unnatural. The collision detection was not robust enough to be useful.

⊙ Having familiarity with the software in the desktop version supported a smooth transition between CAD and VR.

⊙ Using VR provided an increased sense of team engagement.
Immersive Technology as a Decision Making Tool for Product Design

Leif P. Berg

Industry survey of the use of immersive technology to explore these questions:

1. How is VR being used to support innovation in industry?
2. How is VR being used to make decisions?
3. What specific benefits do industry VR practitioners experience?
4. What challenges remain for future research?
Procedure

Conducted on-site visits
- Tours
- Interviews

<table>
<thead>
<tr>
<th>35</th>
<th>25</th>
<th>18</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>contacted</td>
<td>responded</td>
<td>visits</td>
<td>remote</td>
</tr>
<tr>
<td>62</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interviews</td>
<td>industries</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use Cases

- Storytelling
- Packaging
- Communication
- Abstract Data Visualization
- Aesthetic Qualities
- Ergonomics
- Viewability

of Use Cases
Viewability
Ergonomics
Aesthetic Quality
Communication

Miele

Case New Holland
Packaging

Tacom
Data Vis

National Renewable Energy Lab

Idaho National Lab
Storytelling

Lockheed Martin

Tacom
What did we learn?

VR is "just another tool in the toolbox."
Portable systems are on the rise.

“This is a true, two-wire system and that makes it easy.”

Idaho National Labs
Proximity is important, low cost VR helps.

“Put it near the research. Put it near the data instead of having to drag data over here to a CAVE”

Idaho National Labs
Head tracking is not always preferred.
Novel configurations enable interactive design spaces.
VR brings people together.
Starting a VR lab is difficult.

"The first time is when the arm twisting comes."

"We don’t have to do much selling."
And finally …

The experience of VR is difficult to communicate.

It must be experienced firsthand.
Research Challenges

- Better graphics and brighter displays
- Better model conversion process
- Automated model preparation
- Wider field of view (HMDs)
- Better collision detection and haptics
- More portable solutions
Virtual Reality isn’t science fiction any more …
It’s for real!

Image courtesy of Lockheed Martin
Thank you!

Dr. Judy M. Vance
Virtual Reality Applications Center (VRAC)
Mechanical Engineering Department
Iowa State University
Ames, IA

jm Vance@iastate.edu
www.vrac.iastate.edu/~jmvance

The research presented here was performed by Leif Berg, Meisha Berg, Patrick Carlson and Ryan Pavlik with support from the National Science Foundation and the Joseph C. and Elizabeth A. Anderlik Professorship