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Abstract

This review article aims to provide a comprehensive and understandable account of
the theoretical foundation, modeling issues, and numerical implementation of the
Lagrangian–Eulerian (LE) approach for multiphase flows. The LE approach is based
on a statistical description of the dispersed phase in terms of a stochastic point pro-
cess that is coupled with an Eulerian statistical representation of the carrier fluid
phase. A modeled transport equation for the particle distribution function—also
known as Williams’ spray equation in the case of sprays—is indirectly solved using
a Lagrangian particle method. Interphase transfer of mass, momentum and energy
are represented by coupling terms that appear in the Eulerian conservation equa-
tions for the fluid phase. This theoretical foundation is then used to develop LE
submodels for interphase interactions such as momentum transfer. Every LE model
implies a corresponding closure in the Eulerian-Eulerian two–fluid theory, and these
moment equations are derived. Approaches to incorporate multiscale interactions
between particles (or spray droplets) and turbulent eddies in the carrier gas that
result in better predictions of particle (or droplet) dispersion are described. Nu-
merical convergence of LE implementations is shown to be crucial to the success of
the LE modeling approach. It is shown how numerical convergence and accuracy of
an LE implementation can be established using grid–free estimators and computa-
tional particle number density control algorithms. This review of recent advances
establishes that LE methods can be used to solve multiphase flow problems of prac-
tical interest, provided submodels are implemented using numerically convergent
algorithms. These insights also provide the foundation for further development of
Lagrangian methods for multiphase flows. Extensions to the LE method that can
account for neighbor particle interactions and preferential concentration of particles
in turbulence are outlined.
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1 Introduction

1.1 Introduction and Objectives

This paper describes the use of the Lagrangian–Eulerian (LE) approach to
calculate the properties of multiphase flows such as sprays or particle–laden
flows that are encountered in many energy applications. The LE approach
is used to denote a family of modeling and simulation techniques wherein
droplets or particles are represented in a Lagrangian reference frame while
the carrier–phase flow field is represented in an Eulerian frame. This paper
primarily focuses on the use of the LE approach as a solution method for
the transport equation of the droplet distribution function (ddf) or number
density function (NDF), which is also known as Williams’ spray equation.
In a recent review article [1], Fox notes that the NDF representation of the
particle phase constitutes a mesoscopic approach that offers a clear separation
between physical and mathematical approximations. Since the LE approach
is widely used to simulate multiphase flows, a comprehensive description of
this approach can be of use to theoreticians, model developers and end–users
of simulations.

In order for any simulation methodology such as the LE approach to be a
predictive tool, it must be based on

(i) a mathematical representation that is capable of representing the physical
phenomena of interest,

(ii) accurate and consistent models for the unclosed terms that need to be
modeled, and

(iii) a numerically stable and convergent implementation.

There are challenges in each of these areas that must be surmounted in order
to develop such a predictive LE simulation methodology for multiphase flows.
Therefore, this paper addresses key issues related to the LE approach in the
areas of: (i) mathematical representation, (ii) physics–based modeling, and
(iii) numerical implementation. Considerable progress has been made in ad-
dressing many of these challenges since the inception of the LE approach. This
article attempts to summarize these advances and also outline opportunities
for further development of the LE approach.

Multiphase flows in energy applications are often also turbulent, reactive flows.
Since the field of turbulent reactive flows is a mature research area with many
authoritative reviews [2–4], this work will focus mainly on the multiphase
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aspects of the flow with some reference to turbulence interactions. There is
also a wide range of physico-chemical phenomena that are encountered in
nonreacting multiphase flows alone, and these are highly dependent on the
particular application area. For instance, in the area of sprays one can find
many comprehensive reviews of single droplet behavior and spray atomiza-
tion and vaporization [5–7]. In light of the wide variety of physico–chemical
phenomena in multiphase flows, this review will only consider these generic
characteristics of a dispersed two–way coupled, two–phase flow that need to
be incorporated in the LE formulation.

The nonlinear and multiscale interactions in multiphase flow result in a rich
variety of flow phenomena spanning many flow regimes. One of the primary
features of multiphase flow that distinguish it from advection and diffusion
of chemical species in multicomponent flows is the inertia of dispersed phase
particles or droplets. Particle inertia results in a nonlinear dependence of par-
ticle acceleration on particle velocity outside the Stokes flow regime, and this
nonlinearity is important in many applications where the particle Reynolds
number is finite. Also in many multiphase flows one must consider the influ-
ence of the dispersed phase on the carrier–phase momentum balance, and this
two–way coupling is a source of nonlinear behavior in the system.

Polydispersity of the dispersed–phase particles or droplets introduces a range
of length and time scales. Interactions of these polydisperse particles with
carrier–phase turbulence that is inherently multiscale in nature presents fur-
ther modeling challenges. Furthermore, it is not uncommon to encounter a
wide variation in dispersed–phase volume fraction in the same multiphase
flow, ranging from dilute to dense. For example, in a fluidized bed the particle
volume fraction can range from near close–packed at the base of the bed to
less than 5% in the riser. The particle volume fraction in conjunction with the
level of particle fluctuating velocity (that can be characterized by the particle
Mach number) determines the relative importance of advective transport to
collisional effects. Since unlike molecular gases not all multiphase flows are
collision–dominated, it is possible for the probability density function (PDF)
of velocity to depart significantly from the equilibrium Maxwellian distribu-
tion. These nonlinearities, multiscale interactions and nonequilibrium effects
lead to the emergence of new phenomena such as preferential concentration
and clustering that have a significant impact in multiphase flow applications.

Interpreting the LE simulation approach as a numerical solution to the ddf (or
NDF) evolution equation reveals the specific advantages of this mesoscopic [1]
mathematical representation underlying the LE approach for capturing these
nonlinear, multiscale interactions and nonequilibrium effects in multiphase
flow. Williams [8] introduced the ddf in his seminal 1958 paper, and its coun-
terpart in the kinetic theory of gas–solid flow is the number density function
or one–particle distribution function (see Koch 1990 [9] for example). The ddf
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or NDF is an unnormalized joint probability density of droplet (or particle)
size and velocity as a function of space and time. Since the ddf (or NDF)
contains the distribution of droplet (or particle) sizes it naturally captures
the size–dependence of drag and vaporization rate in closed form, whereas
other approaches such as the Eulerian–Eulerian (EE) two–fluid theory [10–12]
that only represent the average size and average velocity of droplets (or par-
ticles) must rely on approximate closure models. One of the major challenges
in the two–fluid averaged–equation approach that is based on average size is
the incorporation of the range of droplet (or particle) sizes, and the nonlinear
dependence of interphase transfer processes on droplet (or particle) size. The
two-fluid EE approach referred to here is not to be confused with the Eulerian
moment equations that can be derived from the ddf, although those moment
equations also contain less information than the ddf. A complete discussion
can be found in Pai and Subramaniam [13].

Similarly, because the ddf (or NDF) contains the velocity distribution of
droplets (or particles), it also captures the nonlinear dependence of parti-
cle drag on particle velocity in closed form. Furthermore, particle velocity
fluctuations, whose statistics are characterized by the granular temperature
and higher moments of particle velocity, are also easily modeled in the LE
framework [14,15]. As pointed out by Fox and co-workers, the LE approach as
well as the quadrature method of moments (QMOM) developed by Fox [16]
lead to physically correct solutions to the problem of crossing particle jets [17–
19], whereas the Eulerian two–fluid theory leads to anomalous results for this
problem. Similar difficulties are encountered by the EE two–fluid approach to
particle or droplet jets impinging on surfaces, and particle– or droplet–laden
flows in regimes not dominated by collisions. This is because EE two–fluid
formulations are not capable of representing the fluxes, and resulting physi-
cal phenomena, associated with two streams of particles (or droplets) moving
with different velocities at the same physical location, whereas this is naturally
incorporated in the LE approach.

In sprays and gas-solid flow in risers the particle Stokes 1 and Knudsen num-
bers 2 span a wide range resulting in velocity distributions that can be far
from equilibrium and need not be close to a Maxwellian distribution. However,
most EE two–fluid formulations are based on kinetic theory closures that are
only valid in the limit of low Knudsen number for equilibrium velocity distri-
butions that are Maxwellian, or non–equilibrium distributions that are slight
departures from Maxwellian. Since nonequilibrium velocity distributions are

1 The particle or droplet Stokes number is the ratio of the particle momentum
response time to a characteristic flow time scale.
2 The particle or droplet Knudsen number is the ratio of the mean free path of a
particle to a characteristic length scale associated with the variation of the average
number density field.
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admissible in the LE approach, it has a significant advantage when it comes
to simulation of sprays or riser flows all the way from the dense to the dilute
regime over a range of droplet or particle Stokes and Knudsen numbers.

Another advantage of the LE approach over the EE two–fluid theory is its
ability to accurately represent collisions in the presence of flow. It is well known
that interactions with the ambient flow can significantly alter the collision
characteristics in particle–laden or droplet–laden flow (grazing collisions), and
the effective restitution coefficient is a function of the particle or droplet Stokes
number [20]. These effects are easily incorporated in the LE approach. Also
from a numerical standpoint, the LE approach minimizes numerical diffusion
in dispersed–phase fields such as volume fraction and mean velocity when
compared to grid–based Eulerian approaches.

Along with the many advantages that the LE approach offers, there are some
aspects of the LE approach that present opportunities for improvement as well.
Since many early LE implementations are formulated only for dilute flow and
invoke the point particle approximation, these have sometimes been misinter-
preted as intrinsic features of the LE method. The formulation of LE models
has also not always respected the requirement of being consistent with its cor-
responding Eulerian–Eulerian two–fluid counterpart, and in some instances
the models are not independent of numerical parameters. Straightforward nu-
merical implementations of the LE method [21,22] without appropriate algo-
rithms for computing particle–grid coupling terms has led to the conclusion
that LE formulations may not be numerically convergent, or are at at best
conditionally convergent [23–26]. Finally, the computational work requirement
of the LE method is higher than the EE averaged equation approach because
it contains a more complete representation of the multiphase flow. Owing to
these reasons, a cursory review of the literature on LE methods may leave the
(incorrect) impression that while LE methods hold the promise of predictive
simulation of multiphase, this has not been realized due to certain inherent
limitations of the approach itself. In this context, the objectives of this review
are to demonstrate that:

(1) the LE formulation is general enough that it can be extended to dense
multiphase flows with finite-size particles, provided appropriate models
are used and volume-displacement effects are accounted for

(2) there are advantages to developing LE sub–models that are consistent
with their EE counterparts, and multiscale interactions can be incorpo-
rated into LE sub–models to accurately model particle dispersion and
energy transfer with the carrier fluid

(3) comprehensive numerical tests reveal that the use of grid–free estimation
methods and computational particle number density control result in
numerically convergent and accurate LE simulations

(4) understanding the mathematical formalism underlying the LE approach
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can give insight into how it might be extended to accurately represent
new phenomena such as preferential concentration

We begin with a brief history of the development of the LE method.

1.2 Lagrangian–Eulerian Methods

Williams developed the fundamental spray equation based on a Lagrangian
description of the spray droplets [8] using the droplet distribution function.
Analytical approaches based on reduction of a Liouville–like equation to a
one–particle distribution function have been developed for particle–laden sus-
pensions [9] and bubbly flows [27]. O’Rourke developed the LE method for
sprays by explicitly coupling Williams’ ddf equation to an Eulerian description
of the averaged gas–phase equations, and he derived the interphase exchange
terms in terms of integrals over the ddf.

A landmark in the evolution of the LE method is the pioneering work of
O’Rourke [28,29] and co–workers [21] who developed a numerical implemen-
tation of the LE method for sprays in internal combustion engine applications
that is now widely used as the KIVA family of codes [21,22]. These works laid
the foundation of the modern LE approach and established the early sub–
models to describe the physics of droplet acceleration, vaporization, collisions,
coalescence and breakup. These two–way coupled calculations were a signifi-
cant advancement over earlier one–way coupled computations, which are es-
sentially Lagrangian tracking algorithms. Dukowicz [30] developed a two–way
coupled particle-fluid numerical model for sprays that included momentum
coupling and volume displacement effects.

The LE methods discussed thus far couple Lagrangian tracking of compu-
tational particles to a carrier flow description based on Reynolds–averaged
Navier–Stokes (RANS) equations. However, it is possible to use the LE ap-
proach to couple a Lagrangian description of the dispersed phase with large
eddy simulations (LES) or direct numerical simulation (DNS) of the carrier
gas phase, resulting in the following principal categories of LE methods:

(1) Fully–resolved DNS (FR-DNS) of droplet or particle-laden flow where the
exact Navier-Stokes equations are solved by fully resolving the droplet or
particle by imposing boundary conditions at each particle or droplet’s
surface [31–40]: FR-DNS in Table 1

(2) Point-particle DNS (PP-DNS) with physical droplets or particles [41–47]:
PP-DNS(p) in Table 1

(3) PP-DNS with stochastic particles [48]: PP-DNS(s) in Table 1
(4) Point particle LES with physical droplets [49,50]: LES(p) in Table 1
(5) Point particle LES with stochastic particles [51–53]: LES(s) in Table 1
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(6) Averaged equations: RANS CFD in Table 1

The principal difference between FR-DNS and PP-DNS is that while the for-
mer can be used to quantify the interphase models, PP-DNS require assumed
models for interphase transfer terms such as particle acceleration and droplet
vaporization. Within PP-DNS a further distinction can be made whether com-
putational particles or parcels are used to represent the physical system. In the
LES studies this distinction is less significant, since the particles or droplets
always obey modeled equations for interphase transfer due to drag or vapor-
ization. The treatment of collisions can also be used to categorize LE methods
as those that employ a statistical treatment of collisions [28,26,54] in contrast
to direct calculation of collisions between particles using either hard–sphere
collisions [55] for low volume fraction or soft–sphere discrete element method
(DEM) collision models for high volume fraction [56–58]. Soft–sphere DEM
collision models are used in LE simulation of fluidized beds [59].

1.3 Outline

With this brief background on LE methods, the rest of this paper is devoted
to an exposition of the theoretical, modeling and numerical aspects of the
LE approach as a solution to the ddf or NDF. The next section describes
the two basic approaches used to formulate the theory of two–phase flows:
(i) the Lagrangian–Eulerian based on a stochastic point–process representa-
tion, and (ii) the Eulerian–Eulerian based on a random field representation.
Section 3 describes the droplet distribution function and its regime of valid-
ity. The dilute flow approximation and the point–particle approximation that
are frequently invoked in the LE approach are reviewed. The mean mass and
momentum conservation equations implied by the ddf evolution are derived.
The EE closures implied by LE models at the level of the mean conservation
equations is described. The velocity second moment equation implied by the
ddf in the LE approach is also derived. The relationships between the LE and
EE approaches is then briefly reviewed. The models that are used in the LE
approach are discussed in Section 4. Numerical solution of the ddf equation
is described in Section 5. Selected examples of state-of-the-art LE simulations
are given in Section 6. Promising directions for extension of the LE approach
are discussed in Section 7. Section 8 gives a summary and presents conclusions
of the paper.
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2 Multiphase Flow Representation

The principal mathematical representations of multiphase flows are described
so that the LE approach can be understood in this wider context. This leads to
the modeling principle of consistency: specifically, the development of LE sub–
models that are consistent with the EE two–fluid theory. It also gives insight
into meaningful comparison of LE simulations with results from experiment
and direct numerical simulation. Finally, it shows the extensions needed in the
LE approach to accurately represent physical phenomena such as preferential
concentration and clustering.

A statistical description of multiphase flows is useful to represent the statistical
variability in configurations of the dispersed phase particles or droplets. Also
unlike single–phase flows, the velocity and pressure fields even in laminar mul-
tiphase flows exhibit statistical variability, and are meaningfully represented
by random fields. In spite of the similarities between the statistical theory
of multiphase flows and that of turbulent single–phase flow, there are in fact
many important differences.

Statistical approaches to multiphase flow can be classified on the basis of
three critiera: (i) whether each phase is represented using a random field or
stochastic point process 3 description, (ii) whether each phase is represented
in an Eulerian or Lagrangian reference frame, and (iii) the level of closure in
the statistical theory. As shown in Fig. 1, the two principal approaches are:
(i) the random field approach in which both dispersed and carrier phases are
represented as random fields in the Eulerian frame, and (ii) the point process
approach in which the dispersed phase is represented as a stochastic point
process in the Lagrangian frame and the carrier phase represented as a random
field in the Eulerian frame. The random field approach at the closure level of
moments leads to the EE two–fluid theory in its ensemble–averaged [10,11]
and volume–averaged variants [60]. The LE approach corresponds to a closure
of the point process approach at the level of the ddf or NDF, with the carrier
phase being represented in an Eulerian frame through a RANS closure, LES
or DNS. In the following subsections, the LE approach is developed in the
context of this family of statistical theories of multiphase flow.

3 The term point process should not be confused with the ’point particle’ assump-
tion. Stochastic point processes are mathematical descriptors of non–contiguous
objects in space that can be spheres of finite radius.
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Fig. 1. Representations of multiphase flow as random fields or a point process em-
bedded in a random field, leading to the EE and LE approaches, respectively. Both
approaches can be used at different levels of closure, and their equivalence is indi-
cated.

2.1 Realization of a multiphase flow

The foundation of any statistical theory rests on the definition of the ensemble
Ω of realizations (or events) ω ∈ Ω for which the probability measure is defined.
Figure 1 shows the description of a realization of a multiphase flow in the
random field and point process descriptions. A brief description of these two
principal statistical representations of multiphase flows follows.

2.2 Eulerian representation of both phases

2.2.1 Random–field description

In statistical theories of turbulent single-phase flow, the Eulerian velocity field
is represented as a random vector field [61]. A similar approach can be adopted
for two–phase flows, but in addition to the velocity (and pressure) field it is
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also necessary to specify the location and shape of the dispersed-phase ele-
ments. The velocity field U(x, t; ω), which is defined in both thermodynamic
phases, is a vector field that is defined at each point x in the flow domain
in physical space, on the ωth realization. The dispersed–phase elements in
that same realization are similarly described by a dispersed–phase indicator
field Id(x, t; ω), which is unity for all points inside the dispersed–phase ele-
ments that are contained in the flow domain, and zero outside. Statistical
theories based on random–field representations require the consideration of
multipoint joint probability density functions, and these have not resulted
in tractable engineering models even for single–phase turbulent flow [61–63].
Edwards presents an attempt at formulating such a theory for multiphase
flows [64], but no tractable models have emerged based on this theory.

The simplest multipoint theory based on the random–field representation that
is useful to modelers is a two–point representation. A comprehensive two–point
statistical description of two–phase flows based on the random-field representa-
tion can be found in Sundaram and Collins [65]. However, even this two–point
theory needs to be extended to statistically inhomogeneous flows before it can
be applied to realistic problems. Even in the homogeneous case the resulting
two–point equations lead to many unclosed terms that need closure models.
Finally, efficient computational implementations need to be devised before the
practical application of the two–point theory can be realized. Therefore, most
engineering models currently rely on a simpler single–point theory.

2.2.2 Two–fluid theory

If statistical information at only a single space–time location (x, t) of the
random–field representation is considered, this results in a single–point Eulerian–
Eulerian two–fluid theory. In this case the statistics of the velocity field U(x, t; ω),
and the dispersed–phase indicator field Id(x, t; ω), are considered at a single
space–time location, i.e., the indicator field reduces to an indicator function.
The velocity and indicator function can be treated as random variables (or
random vector in the case of velocity) parametrized by space and time vari-
ables. The averaged equations resulting from this approach are described in
Drew [10], and Drew and Passman [11]. The single–point Eulerian–Eulerian
theory can be developed at the more fundamental level of probability density
functions also, and this theory is described in Pai and Subramaniam [13].

2.3 Lagrangian representation of the dispersed phase

An alternative approach is to describe the dispersed–phase consisting of Ns

solid particles or spray droplets using Lagrangian coordinates {X(i)(t),V(i)(t), R(i)(t), i =
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1, . . . , Ns(t)}, where X(i)(t) denotes the ith dispersed–phase element’s position
at time t, V(i)(t) represents its velocity, and R(i)(t) its radius. Additional prop-
erties can be included in variants of this representation without loss of gener-
ality. The rigorous development of a statistical theory of multiphase flows [66]
using the Lagrangian approach relies on the theory of stochastic point pro-
cesses [67], which is considerably different from the theory of random fields
[61,68,69] that forms the basis for the Eulerian-Eulerian approach. Such a
theory of multiphase flows is not a trivial extension of the statistical theo-
ries for single–phase turbulent flows, but in fact bears a closer relation to the
classical kinetic theory of gases and its extension to granular gases [70] and
gas-solid flow [9].

2.4 Point process description

Stochastic point process theory [67,71,72] enables the statistical description of
non–contiguous objects that are distributed in space, such as solid particles or
spray droplets, as a point process. This provides the necessary mathematical
foundation to describe the statistics of solid particles or spray droplets. The
theory of marked point processes allows us to assign the size of the particle or
droplet as a “mark” or tag to the particle or droplet location. From this it is
clear that stochastic point process theory does not require that spray droplets
be modeled as point-particles that correspond to δ-function sources of mass
and momentum. However, there is a widespread misconception in the spray
literature that point process models imply ’point particle’ models.

The simplest stochastic point process is the homogeneous Poisson process
characterized by complete independence between the distribution of points, an
example of which is shown in Fig. 2(a). This is not a good model for particles
or droplets of finite size because the independence property allows neighbor-
ing particles or droplets to overlap (see Fig. 2(a)). A better analytical point
process model for dilute multiphase flows is the Matérn hard-core process,
which is obtained by thinning (or pruning) overlaps from the Poisson model.
An example of the Matérn hard-core process obtained by thinning the Pois-
son process of Fig. 2(a) is shown in Fig. 2(b). The advantage of mathematical
models such as the Matérn hard-core process is that their statistical prop-
erties, such as number density and pair-correlation (see Fig. 3), are known
analytically. It is interesting to compare the spatial distribution of particles
from simulation with these analytical point process models. Figure 2(c) shows
the equilibrium spatial distribution of particles obtained following elastic col-
lisions using a soft–sphere DEM model, and its corresponding pair correlation
function is shown in Fig. 3. There is a higher probability of finding neighbors
within 2 particle diameters from the DEM simulation as compared with the
Matérn model. Although these point process models are idealized representa-
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Fig. 2. Spatial distribution of the dispersed phase in multiphase flows. Point process
models for representing multiphase flows at 10% dispersed–phase volume fraction:
(a) the simple Poisson model results in overlapping particles or droplets. (b) the
Matérn hard-core point process is obtained by removing overlapping spheres from
a parent Poisson process through a procedure called dependent thinning. Particle
configurations obtained from soft–sphere DEM with elastic collisions: (c) at 10%
solid volume fraction, and (d) at 1% solid volume fraction. Contour levels in (c)
and (d) are for a passive scalar value of 0.5 obtained from fully resolved DNS at
a Reynolds number of 20 (Rem = Wdp/ν in a homogeneous gas-solid flow with
isothermal particles at zero scalar value, and the ambient fluid at scalar value of
unity. Significant neighbor particle interactions are found even at 1% solid volume
fraction!

tions of multiphase flows, they do provide a useful conceptual framework to
analyze experimental and simulation data.

The statistical representation of a multiphase flow as a point process has been
formulated by Subramaniam [66]. It is shown that the complete characteriza-
tion of all multi-particle events requires consideration of the Liouville pdf (cf.
Fig. 1), and a hierarchy similar to the BBGKY hierarchy [73] can be developed
for multiphase flows as well [66].
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Fig. 3. Pair correlation function g(r) as a function of separation distance between
centers r for 2D disks distributed according to the Poisson and Matérn hard-core
processes shown in Fig. 2 at 10% dispersed–phase volume fraction. The pair cor-
relation function for 3D spheres from soft–sphere DEM is also shown at 10% solid
volume fraction.

2.4.1 Complete representation of the dispersed phase as a point process

A key result of the point–process theory of multiphase flows [66] is the complete
point–process statistical description. This involves specifying the sequence of
probabilities for the events [Ns = k], k ≥ 1, which are denoted

pk = P [Ns = k] , k ≥ 1, (1)

and the corresponding sequence of symmetrized Liouville densities

f sym
Ns=k(x1,v1, r1, . . . ,xk,vk, rk; t) , k ≥ 1. (2)

This complete point-process statistical description of a multiphase flow is then
related to Williams’ droplet distribution function (ddf) through the single–
particle surrogate pdf. The single–particle surrogate pdf is defined in terms of
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the symmetrized Liouville probability density, in a manner analogous to the
single–particle probability density in the BBGKY hierarchy of kinetic theory.
The single–particle surrogate density is defined as

f
[Ns=k]
1s (x1,v1, r1; t) ≡

∫
dx2 dv2 dr2 . . . dxk dvk drkf

sym
[Ns=k](x1,v1, r1, . . . ,xk,vk, rk; t),

(3)
where the superscript [Ns = k] serves to indicate that this single–particle sur-
rogate density is defined for the ensemble which has a total of Ns = k particles
or droplets. Therefore the single–particle surrogate density f

[Ns=k]
1s (x1,v1, r1; t)

is a density conditional on the total number of particles or droplets Ns being
equal to k. For convenience of notation we use the simpler form f

(k)
1s (x1,v1, r1; t)

to denote f
[Ns=k]
1s (x1,v1, r1; t).

2.4.2 The droplet distribution function

Williams’ droplet distribution function is related to the single–particle surro-
gate pdf through the following relation:

f(x,v, r, t) =
∑

k≥1

pkf
(k)(x,v, r, t) =

∑

k≥1

pk k f
(k)
1s (x,v, r; t), (4)

which reveals that the ddf is a superposition of each of the number densities of
particles or droplets in phase space f (k)(x,v, r, t), where each number density
f (k)(x,v, r, t) is weighted by the appropriate probability pk.

If the multiphase flow is modeled as a marked point process [74], then the ddf
can be expressed as the product of the intensity of the point process in physical
space, and a joint probability density function (jpdf) of velocity and radius
conditioned on physical location. The jpdf of velocity and radius conditioned
on physical location f c

VR(v, r | x; t) is expressed in terms of the ddf as:

f c
VR(v, r | x; t) =





f(x,v, r, t)/ns(x; t) if r > 0

0 if r ≤ 0
, (5)

where

ns(x; t) ≡
∫

f(x,v, r, t) dv dr (6)

is the number density. This shows that the ddf is capable of representing
polydispersity and capturing the nonlinear dependence of particle acceleration
on velocity. However, the ddf does not contain two–particle information, nor
does it account for the fluctuations in the number of particles about their
mean value. These points are discussed in the following subsection.
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2.4.3 Differences from classical kinetic theory

While this characterization is similar to the classical kinetic theory of molec-
ular gases [73], some of the important differences are summarized below:

(1) Effect of neighbor particles can be significant even at low volume fraction
because these interactions are mediated by the carrier fluid. Figure 2(d)
shows that the scalar contours surrounding neighbor particles can inter-
act even at 1% volume fraction, whereas the typical rule of thumb for
neglecting such neighbor interactions in dilute sprays is for volume frac-
tion up to 10%. Chiu and coworkers [75] have considered spray models
that incorporate models for the pair correlation function that contains
two–particle information.

(2) Scale separation may be absent in multiphase flows: In molecular gases
the macroscale variation of hydrodynamic variables such as bulk density
occurs on scales much greater than the microscale (molecular size) or
mesoscale (range of interaction of molecules such as mean free path).
However, this is not guaranteed in multiphase flows. As the example in
Fig. 4 shows, the mean fluid temperature may vary on scales comparable
to the mesoscale spatial structure of particles as characterized by the
pair correlation function. This is because of the strong coupling between
phases whereby particles can heat up or cool down the fluid, thereby
affecting the mean fluid temperature over relatively small length scales.

(3) Fluctuations in number of particles or droplets can be significant compared
to the mean: Fluctuations in number can be important near the edge of
sprays or when clusters and streamers form in fluidized bed risers. Such
fluctuations are typically neglected in classical kinetic theory of molecular
and granular gases [76,77]. However, Subramaniam and Pai have recently
shown that these fluctuations can be important in the kinetic theory of
inelastic granular gases [78].

(4) Multiphase Liouville equation is not closed: Another important differ-
ence is that while the Liouville equation in the classical kinetic theory
of molecular gases is a closed equation, the same is not true for the mul-
tiphase Liouville equation. The multiphase Liouville equation depends
on the statistics of the carrier phase because the acceleration of inertial
droplets or particles depends on the slip velocity.

2.4.4 Equivalence and consistency

The schematic in Fig. 1 shows that a hierarchy of closures ranging from multi-
point probability density functions (PDF) to moment equations are possible in
both random field and point process descriptions. It can be shown that under
certain conditions there is an equivalence between the corresponding levels of
closure in both descriptions. The hierarchy of closures implies that a closure
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Fig. 4. Comparison of length scales in multiphase flows. The macroscale corre-
sponds to the variation of average volume fraction or mean fluid temperature in
a central jet fluidized bed (right panel), while the microscale corresponds to the
diameter of particles show in the fully resolved DNS (bottom left panel). The
mesoscale corresponds to the spatial structure of the point process that is char-
acterized by the pair correlation function (middle left panel). The DNS reveals
that the normalized average fluid temperature

〈
φ(f)

〉
(top left panel) varies on

length scales comparable to the mesoscale, indicating lack of scale separation. Here〈
φ(f)

〉
≡ (
〈
T (f)

〉
− Ts)/(Tm,in − Ts), where

〈
T (f)

〉
is the mean fluid temperature,

Tm,in is the bulk fluid temperature at the inlet and Ts is the particle temperature.

at the NDF or ddf level in the LE approach implies a set of moment equa-
tions that correspond to the two–fluid theory in the random field description.
This leads to the principle of developing consistent models in either approach.
Recent work by Pai and Subramaniam establishes the relations between the
point process (LE) and random field (EE) descriptions [13] at the single–point
PDF level of closure.

2.5 Summary

This section described the principal statistical representations of multiphase
flow. The classification of multiphase flow theories into point process (LE)
and random field (EE) categories was explained. The foundations of the EE
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two–fluid theory were briefly described. The connection of the LE approach to
kinetic theory was established. Important differences between the point pro-
cess (LE) description of multiphase flows and the classical kinetic theory of
molecular gases were noted. The relation of the ddf to a complete descrip-
tion of a multiphase in the Lagrangian stochastic point process approach was
explained. This provides the necessary background to understand the LE for-
mulation and its relation to the EE two–fluid theory.

3 Lagrangian–Eulerian Formulation

A central concept in the LE formulation is the statistical equivalence of the
evolution of the particle or droplet ensemble {X(i)(t),V(i)(t), R(i)(t), i = 1, . . . , Ns(t)}
described in Sec. 2.3 to the evolution of the ddf. For generality here we consider
droplets for which the radius may also change due to vaporization.

3.1 Droplet evolution equations

The droplet properties associated with the ith droplet evolve by the following
equations:

dX(i)

dt
=V(i)(t) (7)

dV(i)

dt
=A(i)(t) (8)

dR(i)

dt
=Θ(i)(t), i = 1, . . . , Ns(t), (9)

where A(i) is the acceleration experienced by the droplet, and Θ(i) is the rate
of radius change due to vaporization. The droplet acceleration A(i) arises from
the force exerted by the carrier gas on the droplet that can be calculated from
the stress tensor at the droplet surface. Spray droplets also undergo collisions
that modify their trajectory and velocity. Following collisions, droplets may co-
alesce or break up into smaller droplets. The evolution of the ddf corresponding
to droplet evolution equations can be derived using standard methods [74,73].

3.2 Evolution equation for the ddf or NDF

Starting from the definition of the ddf in Eq. 4, one can derive [74] the following
collisionless form of the ddf evolution equation (also referred to as the spray
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equation) that corresponds to the droplet evolution equations Eqs. 7–9:

∂f

∂t
+

∂

∂xk
[vkf ] +

∂

∂vk
[〈Ak|x,v, r; t〉f ] +

∂

∂r
[〈Θ|x,v, r; t〉f ] = 0. (10)

In the above equation 〈Ak|x,v, r; t〉 represents the expected acceleration condi-
tional on the location [x,v, r] in phase space. Similarly 〈Θ|x,v, r; t〉 represents
the expected rate of change of radius (hereafter referred to as the expected
vaporization rate) conditional on the location [x,v, r] in phase space. The
effects of collisions, coalescence and breakup can also be incorporated [8,21]
to obtain

∂f

∂t
+

∂

∂xk
[vkf ] +

∂

∂vk
[〈Ak|x,v, r; t〉f ] +

∂

∂r
[〈Θ|x,v, r; t〉f ] = ḟcoll + ḟcoal + ḟbu.

(11)

3.2.1 Regime of validity of the spray equation

A detailed description of the mathematical basis of the ddf approach is given
in [74]. The practical implications of the assumptions underlying the ddf ap-
proach are briefly summarized here.

The point process model underlying the ddf approach assumes that a charac-
teristic size length scale can be associated with each droplet. From a purely
representational standpoint this does not pose difficulties even for regions of
the spray where the liquid phase is present as nonspherical elements, rather
than as fully dispersed droplets. As long as the volume of such liquid elements
can be defined, one can always associate with each liquid element a charac-
teristic size length scale which is the radius of a spherical droplet of equal
volume 4 . The point process model is strictly inapplicable only in the intact
core region of a spray. Therefore, the LE approach does require a separate
model for the primary breakup of a liquid jet resulting in an initial condition
for the ddf.

It is noteworthy that two assumptions that are commonly perceived as neces-
sary to establish the validity of the spray equation, have not been used in this
derivation. They are: (i) the assumption of point particles, and (ii) the dilute
spray assumption.

3.2.1.1 Point process vs. point particle assumption The assumption
of point particles is different from the stochastic point process model of a multi-
phase flow, and is considerably more restrictive. The point particle assumption

4 The information concerning the shape of the nonspherical liquid element is lost
in the process, and will have to be accounted for in the models.
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requires that the size (radius) of the particles or droplets be infinitesimal, or
at least smaller than the smallest scale of fluid motions, e.g., the Kolmogorov
scale if the gas–phase flow is turbulent. Here it is shown that multiphase flows
with particles or droplets of finite radius (which may be larger than the Kol-
mogorov scale of gas–phase turbulence) can be successfully modeled using the
stochastic point process model. In summary, the point particle assumption is
unnecessary for the representation and modeling of multiphase flows using the
ddf or NDF approach, which admits particles or droplets of finite size.

3.2.1.2 Dilute assumption Another commonly held view is that the ddf
approach is valid only for dilute multiphase flows. This results in unnecessary
restrictions being imposed on LE simulations that require the computed es-
timate for the average dispersed–phase volume fraction in a grid cell to be
less than some user defined value (e.g., 0.1). This confuses a theoretical issue
with numerics. The theoretical issue is clarified in this section revealing that
this restriction has no basis, while Sec. 5.2 shows that numerically conver-
gent estimation methods also do not impose any restrictions on the volume
fraction.

The average dispersed–phase volume fraction is one measure of how dilute
a spray is. The average dispersed–phase volume 〈Vd(A; t)〉 in a region A in
physical space may be defined in terms of the ddf as:

〈Vd(A; t)〉 ≡
∫

A
θ(x; t) dx ≡

∫

A

∫

[v,r ]

4

3
πr3f(x,v, r, t) dv dr dx , r > 0,

(12)
where

θ(x; t) =
∫

[v,r ]

4

3
πr3f(x,v, r, t) dv dr , r > 0, (13)

is the density of average dispersed–phase volume in physical space. If VA is
the volume associated with region A, then the average dispersed–phase volume
fraction in region A is given by

〈Vd(A; t)〉

VA
=

1

VA

∫

A
θ(x; t) dx, (14)

which reveals that if the average dispersed–phase volume density θ(x; t) is uni-
form in the region A in physical space (i.e., the ddf f(x,v, r, t) is statistically
homogeneous in A), then θ is equal to the average dispersed–phase volume
fraction. If f is statistically inhomogeneous in A, then Eq. 14 states that the
mean value of θ(x; t) over the volume A is the average dispersed–phase volume
fraction.

The validity of the ddf evolution equation does not depend on the average
dispersed–phase volume density. While some models for drag or heat trans-
fer [21] may be limited to volume fraction θ(x; t) ≪ 1 because of limitations
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Simulation Method Carrier flow fields Dispersed phase

Velocity, pressure

FR-DNS with fully
resolved physical parti-
cles/droplets

Realization:
U

(f)(x, t), p(x, t)
Realization: model as point field{
X

(i)(t),V(i)(t), i = 1, . . . , Ns(t)
}

PP-DNS(p) with physi-
cal particles/droplets as
point sources

Realization:
U

(f)(x, t), p(x, t)
Realization: point field{
X

(i)(t),V(i)(t), i = 1, . . . , Ns(t)
}

PP-DNS(s) with stochas-
tic particles

Realization Statistically averaged density
f(x,v, r, t)

LES(p) with physical
droplets as point sources

Filtered field of a
realization

Spatially filtered point field

LES(s) with stochastic
particles

Filtered field of a
realization

Spatially filtered density

RANS Mean fields
〈Ũ(g)〉, 〈p〉

Statistically averaged density
f(x,v, r, t)

Table 1
Representation of carrier flow and dispersed phase in different LE simulations:
DNS(s) and LES(s) are denoted hybrid simulations.

in the correlations on which they are based, these can be extended to include
a dependence on volume fraction. In summary, restrictions on the volume
fraction in LE simulations are unnecessary because there is no intrinsic the-
oretical limitation on the average dispersed–phase volume fraction in the LE
approach, but rather they arise from non–convergent numerical implementa-
tions that compute the dispersed–phase volume fraction using Eulerian grid
cell-based local averages. In Sec. 5.2 it is shown that kernel-based grid–free
estimation methods result in numerically convergent values for the average
dispersed–phase volume fraction and average interphase momentum transfer.

3.3 Eulerian representation of the carrier phase

The LE approach described thus far is very general, and applies to the entire
range of simulations described earlier in Sec. 1.2, including coupling with Eu-
lerian representation of the carrier phase using RANS, LES and DNS. Table 1
lists the representation of the carrier flow field and dispersed phase for different
LE simulation methods. The specific equations appropriate to each of these
simulation methods can be recovered by appropriate interpretation (realiza-
tion, filtered realization or statistical average) of the Eulerian fluid velocity
field, stress tensor and interphase momentum transfer term. The specific form
of the carrier-phase Eulerian equations naturally depends on the simulation
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approach: DNS, LES or RANS.

3.3.1 Instantaneous or filtered Eulerian carrier-phase equations

For FR-DNS where every physical particle or droplet is fully resolved, these are
simply the low Mach number variable–density Navier–Stokes equations with
appropriate boundary conditions at each particle or droplet’s surface. Details
of such particle-resolved simulations can be found in many works [32–35,79–
82,15]). If the droplets or particles are smaller than the Kolmogorov scale
of gas-phase turbulence, then PP-DNS are useful. In this case the dispersed
phase is coupled by kernel–averaging that particular realization of the point
process [83]. However, Moses and Edwards [84] showed that coarse–graining
FR-DNS of force on a particle does not lead to a δ-function momentum source,
as it is often treated in PP-DNS. The appropriate coarse–graining of momen-
tum transfer from point particles, and its effect on the carrier–phase pressure
field needs to be investigated more thoroughly.

Since there are many approaches to LES of two–phase flows, the specific form
of the coupling in LES(p) depends on the implementation: broadly speaking,
the coupling results in local volume–averaging of the Lagrangian point process
realization of the dispersed phase. The same comments on coarse–graining
FR-DNS to PP-DNS apply to LES(p) as well. PP-DNS(s) and LES(s) couple
to a stochastic particle representation of the dispersed phase and are hybrid
methods in the sense that they couple a realization of the carrier fluid phase
with a statistical representation of the dispersed phase. The LE theoretical
basis developed in this work is relevant for these simulations. For DNS(s) and
LES(s) with stochastic particles, the fluid-phase Eulerian momentum equation
in the dilute limit is often taken to be of the form

ρf

(
∂U(f)

∂t
+ U(f)

· ∇U(f)

)
= ∇ · τ − 〈Ffd〉, (15)

where U(f) represents the instantaneous fluid-phase velocity in DNS(a) (and
its filtered counterpart in LES(a)). Note that this is simply the single–phase
momentum conservation equation augmented by the interphase momentum
transfer term

〈Ffd〉 =
∫

[v,r]
m〈A|x,v, r; t〉f(x,v, r, t) dvdr

that accounts for the coupling of the dispersed–phase momentum with the
fluid phase.

Insofar as LE methods are concerned, the principal benefit of FR-DNS is to
quantify unclosed terms in the ddf evolution equation (or its moments), and
to develop better models for these terms. Some details of how particle– or
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droplet–resolved DNS solutions can be used to develop LE and EE submodels
are given in Garg [82]. If point particles are used, as in PP-DNS(p) and LES(p),
then the foregoing LE theoretical development can be used to interpret the
results. However, such simulations have less value for LE model development
as compared to FR-DNS. Simulations with stochastic particles such as DNS(s)

and LES(s) are essentially LE models with better representation of the Eulerian
carrier phase than RANS, and the preceding theoretical development is useful
in interpreting the results of these models and comparing them with both
FR-DNS and LE coupled with RANS.

3.3.2 Averaged Eulerian carrier-phase equations

The averaged Eulerian carrier-phase equations are given by the two–fluid the-
ory [10,11]. The specific form of these equations is taken from Pai & Subrama-
niam [13]. For CFD spray simulations using averaged carrier-phase equations
that account for two–way coupling and do not assume a dilute spray, the
Eulerian mean mass conservation equation is

∂αf 〈ρ|If = 1〉

∂t
+

∂

∂xi

(αf 〈ρ|If = 1〉〈Ũ
(f)
i 〉 = 〈S(f)

ρ 〉, (16)

where the phase–averaged mean velocity in the gas–phase is given by

〈Ũ
(f)
i 〉 = 〈IfρUi〉/〈Ifρ〉 (17)

and

〈S(f)
ρ 〉 =

〈
ρ
(
Ui − U

(I)
i

) ∂If

∂xi

〉
(18)

is the source term due to interphase mass transfer. The Eulerian mean mo-
mentum conservation equation is

∂

∂t
[αf 〈ρ | If = 1〉〈Ũ

(f)
i 〉] +

∂

∂xj

[αf〈ρ | If = 1〉〈
˜

U
(f)
i U

(f)
j 〉]

=
∂

∂xj
〈Ifτ

(f)
ji 〉 + 〈Ifρbi〉 + 〈S

(f)
Mi〉, (19)

where 〈S
(f)
Mi〉 is the interfacial momentum source term given by

〈S
(f)
Mi〉 =

〈
ρUi

(
Uj − U

(I)
j

) ∂If

∂xj
− τji

∂If

∂xj

〉
. (20)

The so-called “dilute approximation” to these equations that neglects the
volume displaced by the presence of the dispersed–phase particles or spray
droplets is often used 5 . It is obtained by setting αf = 1 in the above equations

5 See for instance the standard KIVA implementation [21].
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and neglecting the volume fraction of the dispersed phase. For example, in this
notation the simplified mass conservation equation [21] reads

∂ρf

∂t
+ ∇ · (ρf 〈Ũ

(f)〉) = 〈S(f)
ρ 〉, (21)

where ρf = αf 〈ρ | If = 1〉 (in codes such as KIVA αf is set to unity, so the
bulk or apparent gas density is simply the thermodynamic gas density).

However, there is another assumption implicit in this “dilute approximation”
to the mass conservation equation that is worth noting. The proper simpli-
fication of the mean mass conservation equation in the dilute limit is not
obtained by simply setting αf = 1 in Eq. 16, but by first expanding the terms
and rearranging to obtain

∂ρf

∂t
+ ∇ · (ρf 〈Ũ

(f)〉) =
〈S(f)

ρ 〉

αf
− ρf

[
D̃

D̃t
ln αf

]
, (22)

where
D̃

D̃t
≡

∂

∂t
+ 〈Ũ(f)〉 · ∇.

Even in dilute sprays the effect of large gradients in the volume-fraction at the
edge of the spray can result in significant contributions from the term in ln αf ,
and therefore this term needs to be quantified in spray calculations. Clearly,
the assumption of αf = 1 only validates the simplification 〈S(f)

ρ 〉/αf ≈ 〈S(f)
ρ 〉.

Apte and Patankar [85] and Ferrante and Elghobashi [86,87] have developed
LE simulations that account for volume displacement effects.

3.4 Interphase transfer terms

The source terms (〈S(f)
ρ 〉 and 〈S

(f)
Mi〉) that appear in the Eulerian gas–phase

averaged equations (cf. Eqs. 16– 20) couple the dispersed–phase to the carrier
phase, and are opposite in sign to their counterparts in the dispersed phase:

〈S(f)
ρ 〉=−〈S(d)

ρ 〉 (23)

〈S
(f)
Mi〉=−〈S

(d)
Mi〉. (24)

Their counterparts in the dispersed phase can be expressed as integrals with
respect to the ddf, and the relations are [13]

〈S(d)
ρ 〉 ⇐⇒ αd ρd

{
3〈Ω̃ | x; t〉 + 〈Θ̃ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

, (25)
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where Ω = Θ/R and the volume–weighted average of any smooth function
Q(v, r) is defined as:

〈Q̃〉 ≡
〈R3Q〉

〈R3〉
, (26)

with
〈Q〉 ≡

∫

[v,r ]
Q(v, r)f c

VR(v, r | x; t) dv dr , r > 0. (27)

Details can be found in Ref. [13].

It is convenient to decompose the interfacial momentum source term 〈S
(d)
M 〉 into

two parts, one attributable to interphase mass transfer arising from phase
change 〈S

(d)(PC)
M 〉, and the other to the interfacial stress 〈S

(d)(IS)
M 〉, which is

nonzero even in the absence of interphase mass transfer. These are defined as:

〈S
(d)(PC)
Mi 〉 ≡

〈
ρUi

(
Uj − U

(I)
j

) ∂Id

∂xj

〉
(28)

〈S
(d)(IS)
Mi 〉 ≡ −

〈
τji

∂Id

∂xj

〉
. (29)

The momentum source due to interfacial stress can be expressed in terms of
the dispersed–phase Lagrangian description as

〈S
(d)(IS)
Mi 〉 ⇐⇒ αd ρd 〈Ãi〉, (30)

while the momentum source due to phase change can be written as:

〈S
(d)(PC)
Mj 〉 ⇐⇒ αd ρd

{
3〈ṼiΩ | x; t〉 + 〈ṼiΘ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

.

(31)

Detailed derivation and discussion of these terms can be found in Ref. [13].

3.5 Dispersed–phase mean equations: mass and momentum conservation

The ddf evolution equation implies an evolution of mean mass and momentum
in the dispersed phase. If a constant thermodynamic density of the dispersed
phase ρd is assumed, then the mean mass conservation equation implied by
the ddf evolution equation is obtained by multiplying Eq. 10 by (4/3)πr3ρd

and integrating over all [v, r+] (r+ is simply the region of radius space corre-
sponding to r > 0), to obtain:

∂

∂t

[
4

3
π〈R3〉ρd n

]
+

∂

∂xk

[
4

3
π〈R3〉〈Ṽk〉ρd n

]
=

n
4

3
πρd 〈R3〉

{
3〈Ω̃ | x; t〉 + 〈Θ̃ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

. (32)
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The source term on the right hand side of Eq. 32 contains two parts. One
part corresponds to a loss of mean mass due to vaporization. The other part
represents the depletion of number density due to a flux of droplets across
the r = 0+ boundary, which corresponds to the smallest radius below which
a drop is considered evaporated.

The mean momentum conservation equation implied by the ddf evolution
equation Eq. 10 is obtained by multiplying Eq. 10 by (4/3)πr3ρdvj and inte-
grating over all [v, r+]:

∂

∂t
[n

4

3
πρd〈R

3〉〈Ṽj〉] +
∂

∂xk

[n
4

3
πρd 〈R3〉〈ṼjVk〉] = n

4

3
πρd 〈R3〉〈Ãj | x; t〉

+n
4

3
πρd 〈R3〉

{
3〈ṼjΩ | x; t〉 + 〈ṼjΘ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

. (33)

where mass–weighted averages have been used as in Eq. 32. The last term
on the right hand side of the above equation corresponds to a loss of mean
momentum due to vaporization, and the depletion of mean momentum due to
a flux of droplets across the r = 0+ boundary.

Substituting Eq. 32 into the Eq. 33 results in:

n
4

3
πρd〈R

3〉

{
∂〈Ṽj〉

∂t
+ Ṽk

∂〈Ṽj〉

∂xk

}
=

n
4

3
πρd 〈R3〉〈Ãj | x; t〉 −

∂

∂xk

[
n

4

3
πρd 〈R3〉

〈
˜

v
′′ (d)
j v

′′ (d)
k

〉]

+ n
4

3
πρd 〈R3〉

{
3〈ṼjΩ | x; t〉 + 〈ṼjΘ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

− n
4

3
πρd 〈R3〉

{
3〈Ṽj〉〈Ω̃ | x; t〉 + 〈Ṽj〉〈Θ̃ | x, r = 0+; t〉f c

R(r = 0+ | x; t)
}

.

(34)

where

〈
˜

v
′′ (d)
j v

′′ (d)
k

〉
≡
∫

[v,r+]

(
vj − 〈Ṽ

(d)
j 〉

) (
vk − 〈Ṽ

(d)
j 〉

) r3f c
VR(v, r | x; t)

〈R3(x, t)〉
dv dr.

When constructing models for terms such as interphase mass, momentum and
energy transfer, it is useful to model the Galilean–invariant (GI) forms of these
terms because such models are then frame-invariant with respect to Galilean
transformations. A Galilean transformation consists of transforming position
and time as x∗ = x+Wt and t∗ = t, respectively, where W is a constant trans-
lational velocity. If a quantity Q is Galilean invariant, then Q(x∗, t∗) = Q(x, t).
The velocity transforms as U∗(x∗, t∗) = U∗(x+Wt, t)=U(x,t)+W and is not

25



Galilean invariant. If the non-GI forms are modeled, then the resulting models
may not be frame-invariant.

The following are the GI combinations of unclosed terms are:

{
〈ṼjΩ | x; t〉 − 〈Ṽj〉〈Ω̃ | x; t〉

}
,

and {
〈ṼjΘ | x, r = 0+; t〉 − 〈Ṽj〉〈Θ̃ | x, r = 0+; t〉

}
.

Particle method solutions to the ddf equation that model 〈A|x,v, r; t〉 and
〈Θ|x,v, r; t〉 automatically guarantee GI modeling of the above terms in the
mean momentum equation.

3.6 Second–moment equation

The second moment of particle velocity leads to the granular temperature in
gas–solid flow, and it is similarly defined for droplets as well. In order to derive
the second–moment equation in the LE approach, it is useful to first define
the volume–weighted ddf of fluctuating velocity g̃(x,w, r, t) defined as

g̃(x,w, r, t)= f̃(x, 〈Ṽ | x; t〉 + w, r, t)

= r3f(x,v, r, t) (35)

= 〈R3(x; t)〉ns(x; t) f̃ c
VR(〈Ṽ | x; t〉 + w, r | x; t) (36)

= 〈R3(x; t)〉ns(x; t) g̃c(w, r | x; t), (37)

where

w = v − 〈Ṽ | x; t〉,

where g̃c(w, r|x; t) is the r3–weighted or volume weighted pdf of fluctuating
velocity.

The evolution equation of g̃ can be derived from Eq. 10 (see Appendix A for
a derivation):

∂g̃

∂t
+
(
〈Ṽk〉 + wk

) ∂g̃

∂xk
= wk

∂g̃

∂wl

∂〈Ṽl〉

∂xk
−

∂

∂wl

[
〈Al | x,v, r; t)〉g̃ − g̃

∂〈Ṽl〉

∂t
− g̃〈Ṽk〉

∂〈Ṽl〉

∂xk

]

−
∂

∂r
{〈Θ | x,v, r; t〉g̃} + 3〈Ω | x,v, r; t〉g̃.

(38)

The second moment or dispersed–phase Reynolds stress equation can be ob-
tained by multiplying the g̃ evolution equation by wiwj (and a factor κ =
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(4/3)πρd) and integrating over all [w, r+] space to obtain:
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material derivative
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RS change due to mass transfer (1)
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v
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〈
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〉
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〉
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︸ ︷︷ ︸
RS change due to mass transfer (2)

.

(39)

In the above equation the material derivative is with the mass–weighted mean
dispersed–phase velocity and the production term is due to mean gradients in
the dispersed–phase velocity. The fluctuating acceleration–velocity covariance
represents the interphase transfer of kinetic energy in fluctuations, and the last
two terms correspond to the net Reynolds stress change due to interphase mass
transfer. The terms in the above equation are grouped in Galilean–invariant
combinations.

3.7 Equivalence and consistency between LE and random–field approaches

Establishing the relationships between these two basic approaches used to for-
mulate the theory of multiphase flows is important for developing consistent
models and can be of practical use in hybrid simulation approaches [88,89].
A comprehensive derivation of these relations can be found in Pai and Subra-
maniam [13]. In that work a theoretical foundation for the random–field and
point–process statistical representations of multiphase flows is established in
the framework of the probability density function (pdf) formalism. Consis-
tency relationships between fundamental statistical quantities in the EE and
LE representations are rigorously established. It is shown that these fundamen-
tal quantities in the two statistical representations bear an exact relationship
with one another only under conditions of spatial homogeneity. Transport
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equations for the probability densities in each statistical representation are
derived. Governing equations for the mean mass, mean momentum and sec-
ond moment of velocity corresponding to the two statistical representations
are derived from these transport equations. In particular, for the EE repre-
sentation, the pdf formalism is shown to naturally lead to the widely used
ensemble–averaged equations for two–phase flows. Galilean–invariant combi-
nations of unclosed terms in the governing equations which need to be modeled
are clearly identified. The correspondence between unclosed terms in each sta-
tistical representation is established. Hybrid EE–LE computations can benefit
from this correspondence, which serves in transferring information from one
representation to the other.

4 Modeling

The evolution equation for the ddf (Eq. 10) contains conditional expectation
terms 〈Ak|x,v, r; t〉 and 〈Θ|x,v, r; t〉 that represent the average particle or
droplet acceleration and average radius evolution rate, respectively. These are
not closed at the level of the ddf, i.e., they are not completely determined by
the ddf or its moments alone, since they depend on higher–order multiparticle
statistics (cf. Fig 1) and carrier–phase properties as well. In the more general
form of the ddf evolution (Eq. 11) that allows for collisions, coalescence and
break-up, the corresponding source terms in the ddf equation that are collision
integrals with appropriate kernels also need to be modeled.

4.1 Modeled ddf evolution equation

The specification of models for the unclosed terms in the ddf evolution equa-
tion results in a modeled ddf evolution equation:

∂f ∗

∂t
+

∂

∂xk
[vkf

∗]+
∂

∂vk
[A∗

k(x,v, r, t)f ∗]+
∂

∂r
[Θ∗(x,v, r, t)f ∗] = ḟ ∗

coll
+ḟ ∗

coal
+ḟ ∗

bu
,

(40)
where A∗

k(x,v, r, t), Θ∗(x,v, r, t) and ḟ ∗
coll/coal/bu represent a family of models

for 〈Ak|x,v, r; t〉, 〈Θ|x,v, r; t〉, and ḟcoll/coal/bu, respectively. The modeled ddf
f ∗, which is the solution to Eq. 40, is the model for f implied by these model
specifications.

For practical multiphase flow problems the solution to the ddf evolution equa-
tion is coupled to an Eulerian carrier–phase flow solver [29,21]. Here we primar-
ily consider coupling to a Reynolds–averaged Navier Stokes (RANS) solver,
although many of the modeling considerations are equally applicable to LES
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or DNS coupling as well. The influence of the dispersed phase on the carrier
phase is represented by the addition of interphase coupling source terms (cf.
Sec. 3.4) to the usual carrier–phase RANS equations (cf. Eqs. 16–20). When
the gas phase is represented by Reynolds–averaged fields, a class of deter-
ministic models for the unclosed terms 〈Ak|x,v, r; t〉 and 〈Θ|x,v, r; t〉 may be
written as follows:

Unclosed term Model

〈Ak|x,v, r; t〉 : A∗
k ({〈Qf (x, t)〉} ,M(f(x,v, r, t))) (41)

〈Θ|x,v, r; t〉 : Θ∗ ({〈Qf(x, t)〉} ,M(f(x,v, r, t))) , (42)

where the models A∗
k and Θ∗ depend on {〈Qf (x, t)〉} and M(f(x,v, r, t)).

Here {〈Qf(x, t)〉} represents the set of averaged fields from the carrier fluid
solution (which includes such fields as the turbulent kinetic energy and mean
fluid velocity), and M(f) is any moment of the ddf. The dependence on M(f)
is a general representation of the dependence that the modeled terms might
have on quantities like the average dispersed–phase volume fraction density in
physical space, which are moments of the ddf (cf. Eq. 13).

4.2 Solution approaches

In order to solve a general multiphase flow problem using the ddf or NDF
approach, Eq. 40 for the modeled ddf is to be numerically solved with appro-
priate initial and boundary conditions on f ∗, for a particular specification of
the modeled terms A∗

k, Θ∗ and the collisional source terms.

4.2.1 Particle methods

For ease of modeling and computational representation of boundary condi-
tions, a solution approach based on particle methods is commonly used to
indirectly solve Eq. 40 in a computationally efficient manner [21]. This solu-
tion approach is similar to particle methods used in the probability density
function approach to modeling turbulent reactive flows, a thorough exposi-
tion of which is given by Pope [4]. As discussed in [66,74], one can associate
an ensemble of Ns identically distributed surrogate droplets with properties
{X∗(i)(t),V∗(i)(t), R∗(i)(t), i = 1, . . . , Ns(t)}, where X∗(i)(t) denotes the ith sur-
rogate droplet’s position at time t, V∗(i)(t) represents its velocity, and R∗(i)(t)
its radius. The properties associated with the ith surrogate droplet evolve by
the following modeled equations:

29



dX∗(i)

dt
=V∗(i) (43)

dV∗(i)

dt
=A∗(i) (44)

dR∗(i)

dt
=Θ∗(i), i = 1, . . . , Ns(t) (45)

where A∗(i) is the modeled acceleration experienced by the surrogate droplet,
and Θ∗(i) is its modeled rate of radius change due to vaporization.

The correspondence between the surrogate droplets (or surrogate particles)
in the LE simulation and the spray droplets (or physical particles) is only at
the level of the conditional expectations 〈Ak|x,v, r; t〉 and 〈Θ|x,v, r; t〉. Sur-
rogate particles in the particle method solution to the ddf are not individual
physical particles or spray droplets, even though the drag that a surrogate
particle experiences is often modeled as the isolated particle or single–droplet
drag. In fact the correct interpretation is that 〈Ak|x,v, r; t〉 is the average
drag experienced by a physical particle or droplet in a suspension, and that
is different from the isolated particle drag since it includes volume fraction
and neighbor particle effects. Conceptualizing surrogate particles as only be-
ing statistically equivalent to physical particles or droplets gives considerable
flexibility in modeling.

The principle of stochastic equivalence (see Pope [4]) tells us that two systems
can evolve such that the individual realizations in each system are radically
different, but the two may have identical mean values. Therefore, the system
of surrogate droplets (or surrogate particles) may have individual realizations
that are vastly different from those of the physical droplets or particles (obey-
ing non–differentiable trajectories, for instance), and yet its implied condi-
tional expectation terms A∗

k and Θ∗ can match 〈Ak|x,v, r; t〉 and 〈Θ|x,v, r; t〉.
(The principle of stochastic equivalence [4] also reveals that the mapping of
particle models to A∗

k and Θ∗ is many–to–one, i.e., different particle models
can result in the same A∗

k and Θ∗.) A direct corollary of the stochastic equiv-
alence principle is that in addition to deterministic particle evolution models,
one can also use stochastic particle models with random terms in the parti-
cle property evolution equations (Eqs. 43–45). The addition of random terms
(strictly speaking, Wiener process increments) to the computational particle
position and velocity evolution results in the appearance of corresponding dif-
fusion terms (in position and velocity space) in the modeled ddf evolution
equation that now resembles the Fokker–Planck equation [90].

There is another class of models that can be termed particle interaction mod-
els, and they are often encountered in modeling the collision term. In these
models the surrogate particles within an ensemble may interact. A common
misconception in Lagrangian modeling is the assumption that the surrogate
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particles (or their computational counterparts discussed in Sec. 5) contain ac-
curate two–particle information. Of course this is not the case if they only
correspond to the droplet ensemble at the level of the conditional expecta-
tions 〈Ak|x,v, r; t〉 and 〈Θ|x,v, r; t〉. In order for correspondence at the level
of two–particle statistics, the surrogate particles would need to match the un-
closed terms in the evolution equation for the two–particle density, and also
match two–particle statistics at initial time. Another undesirable feature of
particle interaction models is that they can develop unphysical correlations
over time [91] due to repeated interactions with neighbors in the same en-
semble. Stochastic collision models do not suffer from this drawback [92], and
it is easier to ensure their numerical convergence. Besides, the modeling as-
sumptions at the two–particle level appear explicitly in stochastic models.
Therefore, even for the collision term it appears that stochastic models are
more promising.

4.2.2 Solution of moment equations

Recently Fox and coworkers [17,16,93] have developed a quadrature method
of moments (QMOM) approach to solve the moment equations implied by the
ddf in an accurate and efficient manner by discretizing the ddf or NDF in terms
of a sum of δ-functions at time–varying abscissa locations with corresponding
weights that also evolve in time. This approach is able to successfully represent
the crossing of particle jets that is not captured by standard approaches that
directly solve the moment equations. By respecting the hyperbolic nature of
the collisionless ddf equation, the QMOM approach is able to accurately cap-
ture ’shocks’ in the dispersed phase and nonequilibrium characteristics of the
velocity PDF (whereas moment closures based on KT of gas–solid flow often
rely on near–equilibrium assumptions). Results for spray [94] and particle–
laden flows [17] obtained using this approach are very promising.

4.3 Modeling challenges

One of the difficulties in developing LE sub–models for average acceleration
or rate of radius evolution is that these sub–models interact with each other
in a realistic multiphase flow simulation. Therefore, it is virtually impossi-
ble to isolate the effect of a sub-model and truly assess its performance in
a realistic multiphase flow simulation. For this reason, attempts to improve
multiphase flow models using such realistic multiphase flow simulations tend
to be inconclusive. However, multiphase flow simulations using a combination
of sub–models can be useful in determining the sensitivity of overall multi-
phase flow predictions to variations in specific sub–models (see for example,
the sensitivity study by van Wachem comparing two–fluid sub–models in flu-
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idized bed test cases [95]), and may serve to prioritize modeling efforts for
that particular application. It should be noted that this sensitivity is of course
highly application–dependent.

Another approach is to test and improve sub–models in an idealized test case
using a higher fidelity simulation such as DNS that is believed to be closer
to the ’ground truth’. Such an approach can be very useful in assessing a
sub–model’s performance in isolation (in the absence of interaction with other
sub–models), and for further sub–model development. In the rest of this sec-
tion, this approach will be pursued by taking the acceleration model A∗

k as an
example to illustrate modeling challenges. The principal modeling challenges
in the LE approach arise from the need to represent the nonlinear, nonlo-
cal, multiscale interactions that characterize multiphase flows. The influence
of neighbor particles or droplets, and the importance of fluctuations is also
discussed. Nevertheless, it should be borne in mind that the true test of any
sub–model is of course its predictive capability in a realistic multiphase flow
simulation where it interacts with other sub–models.

4.3.1 Nonlinearity

One of the principal difficulties in modeling the conditional mean accelera-
tion 〈Ak|x,v, r; t〉 term is its dependence on particle velocity 6 . This non-
linearity is evident in the standard drag law for isolated particles, drops
or bubbles [96]. The other source of nonlinearity is the dependence of the
conditional mean acceleration on the dispersed–phase volume fraction. FR-
DNS of steady flow past fixed assemblies of monodisperse particles based
on continuum Navier–Stokes equations (for example, the FR-DNS approach
called Particle–resolved Uncontaminated–fluid Reconcilable Immersed Bound-
ary Method (PUReIBM)) as well as the Lattice Boltzmann Method (LBM)
have been useful in developing drag laws that incorporate this volume–fraction
dependence (see Fig. 5). Some LE simulations [21] use an isolated particle drag
correlation for even up to 10% volume fraction on the basis of the flow being
dilute. Figure 5 shows the dependence of the normalized average drag force
F experienced by a particle in a suspension, on solid volume fraction φ, at
a mean slip Reynolds number Rem ≡ |〈W〉| (1 − φ) D/νf equal to 100. Here
〈W〉 is the mean slip velocity, D is the particle diameter, and νf is the fluid
kinematic viscosity. The average drag force is normalized by the Stokes drag
experienced by a particle at the same superficial velocity (1 − φ) |〈W〉|, such
that F = m〈A〉/3πµfD (1 − φ) |〈W〉|, where µf is the dynamic shear viscos-
ity of the fluid. The solid black line in Fig. 5 (whose scale is indicated by

6 Note that the conditional acceleration appears inside the velocity derivative in
the ddf evolution equation, whereas in the KT of molecular gases the acceleration
is independent of velocity and can be taken outside the velocity derivative.
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Fig. 5. Variation of average drag force experienced by a particle in a suspension as
a function of solution volume fraction φ. The Reynolds number based on the mean
slip velocity is 100.

the y–axis on the right ) gives the departure of this average drag force from
the isolated drag law (ε = (F − Fisol)/Fisol). It is seen that this departure
is nearly 100% at a solid volume fraction of 0.1. The dependence of drag on
volume fraction is given by the computational drag laws proposed by various
authors [79–81,40]. For example, the following PUReIBM drag law by [40]

F (φ, Rem) =
Fisol (Rem)

(1 − φ)3 +
5.81φ

(1 − φ)3
+0.48

φ1/3

(1 − φ)4 +φ3Rem

(
0.95 +

0.61φ3

(1 − φ)2

)
,

(46)
is quite easy to implement in LE codes. In the above equation [40], Fisol (Rem)
is the drag on an isolated particle that was taken from the Schiller–Naumann
correlation [97]. The dependence of drag on volume fraction is also directly
implicated in the growth of instabilities in the dispersed–phase volume frac-
tion [9]. The nonlinear dependence on volume fraction also manifests itself in
the interphase momentum coupling term αd ρd 〈Ãi〉 (cf. Eq. 30).

4.3.2 Nonlocal effects

The lack of scale separation in multiphase flows (cf. Fig. 4) that was illustrated
by showing that mean fluid temperature may vary on scales comparable to
the mesoscale spatial structure of particles has implications for modeling. The
form of the models given by Eqs. 41–42 is local in physical space, i.e., the
modeled term at x depends only on f and 〈Qf〉 at the same physical location
x. Models that are local in physical space are strictly valid only if the char-
acteristic length scale of variation of mean quantities (macroscale denoted by
ℓmacro) is always greater than a characteristic length scale ℓmeso associated
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with the particles or droplets (micro and mesoscales). This is because if scale
separation does not exist and ℓmeso ∼ ℓmacro, then surface phenomena such
as heat transfer and vaporization occurring at a distance ℓmeso from the phys-
ical location x would affect the evolution of mean fields at x. Nonlocal models
have been developed for the treatment of near-wall turbulence [98,99], but
current multiphase flow models are all of the local type given by Eqs. 41–42.

4.3.3 Multiscale effects

The presence of a wide range of length and time scales in both the carrier and
dispersed phase poses a significant modeling challenge in multiphase flows.
The nature of these interactions is illustrated using the acceleration model as
an example.

Carrier phase

Turbulence in the carrier phase results in a range of length and time scales.
In fact, even laminar multiphase flows can exhibit significant levels of non–
turbulent velocity fluctuations with a range of length and time scales, as re-
cently shown by FR–DNS of Tenneti et al. [100]. The density difference be-
tween the dispersed and carrier phases results in the dispersed phase particles
or droplets having higher inertia than fluid material volumes or eddies of the
same size. Therefore, dispersed phase particles or droplets may interact dy-
namically and exchange momentum with fluid eddies that are much larger in
size. The particle or droplet momentum response time can be used to calcu-
late the size of a turbulent eddy in the inertial sub–range with the same eddy
turnover time. This in turn can be used to define a range of eddy length scales
with which the dispersed phase may interact dynamically. It should also be
noted that the particles or droplets may not exchange momentum over the
same time scale with eddies of all sizes in the carrier fluid turbulent kinetic
energy spectrum. These observations motivate the development of multiscale
interaction models for particle or droplet acceleration.

Dispersed phase

Particles or droplets can preferentially concentrate [101–103] in turbulence,
and also organize into clusters and streamers in fluidized bed risers [104,105]
depending on the nature of the particle-fluid and interparticle interactions
(inelastic collisions, cohesion, electrostatics). This introduces a range of length
(and time) scales in the dispersed phase, that can range from macro to meso
to microscales as discussed in Section 2.4.3 (cf. Fig. 4). Clearly, momentum
transfer between the carrier and dispersed phases is a mutiscale interaction.
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At the microscale, the acceleration experienced by individual particles can be
affected by their being deep inside a cluster, or in a relatively isolated location.
Preferential concentration of O(1) Stokes number particles in low vorticity
regions of turbulent flow leads to the formation of mesoscale structures. It is
also reported that the average drag experienced by the solid phase can depend
significantly on the presence of clusters [106–108]. It follows that the interphase
source terms in the carrier phase that represent momentum coupling should
also account for this multiscale interaction.

4.3.4 Effect of neighbors

While it is intuitively clear that the effect of neighbors will become impor-
tant with increasing dispersed–phase volume fraction, the effect of neighbor
particles or droplets on interphase interactions has been difficult to quantify.
In the absence of conclusive data these interactions are usually neglected for
flows with dispersed–phase volume fraction less than 10% . Chiu and cowork-
ers [75] have developed models to incorporate neighbor droplet or particle
effects, but their accuracy is difficult to establish in the absence of validation
data. It was already noted (cf. Fig. 2(d)) that recent FR–DNS of scalar trans-
port in steady flow past fixed particle assemblies show that scalar contours
surrounding neighbor particles can interact even at 1% volume fraction. The
first–order effect of neighbor particle interactions can be captured by incorpo-
rating a dependence of the drag law on volume fraction (which is a first–order
statistic). However, the question then arises whether second–order statistics
such as the pair correlation function that corresponds to the arrangement (or
structure) of neighbor particles or droplets at the same volume fraction can
affect interphase transfer terms.
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Fig. 6. Variation of average drag force experienced by a particle with varying nearest
neighbor distance. The solid volume fraction is kept fixed when the effect of nearest
neighbor distance is examined.
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To address this question we prepared different particle configurations, each
with the same average number density 7 corresponding to solid volume frac-
tions of 0.1, 0.2 and 0.3, but with a different hard–core distance hc (see
Fig. 6(a)). If hc equals the particle diameter, then the particles can get arbi-
trarily close until their surfaces touch, but with increasing hc the particles are
forced to be farther away from each other. Figure 6(b) shows the dependence
of the average drag force with increasing hard–core distance hc, for three dif-
ferent values of the solid volume fraction. It is seen that the drag exhibits an
increase with hard–core distance normalized by particle diameter, increasing
by as much as 20% as normalized hard–core distance increases from unity
to 1.2 (for volume fraction of 0.3 in Fig. 6(b). FR–DNS studies of turbulent
flow past clustered and uniform distributions of particles (at the same vol-
ume fraction) [31] indicate that the interphase transfer of energy in velocity
fluctuations is also dependent on the statistical distribution of neighboring
particles.

4.3.5 Importance of fluctuations

It is clear from visual observation of many multiphase flows that the num-
ber of dispersed–phase elements (solid particles, droplets or bubbles), and the
geometric volume associated with them, can vary significantly in time and
space. In a realization of a multiphase flow we encounter a number N(V ) of
dispersed particles (or drops or bubbles) in a region V in physical space. In
general N(V ) is a random number, although this randomness is not explicitly
accounted for in the kinetic theory of granular or gas-solid flow. Kinetic theory
was originally developed for the description of molecular gases where this ran-
domness is not significant because fluctuations are negligible on macroscales
owing to scale separation. Since this scale separation is not guaranteed in
multiphase flows (cf. Fig. 4) it is necessary to account for the randomness in
N(V ). Fluctuations in number, and the importance of second–order effects,
can be assessed through second–moment measures of point fields [67]. It is
natural to define the variance of N as

var(N) = 〈N2〉 − 〈N〉2,

and the variance captures the effect of fluctuations in N . Fluctuations are
closely related to clusters, which is a term loosely used to describe spatial
patterns in particle point fields. Here we investigate what influence these fluc-
tuations in number and volume have on particle–fluid interaction that affects
〈Ak|x,v ; t〉, the conditional acceleration of a particle due to hydrodynamic
forces. Figure 7(b) shows a scatter plot of the locally averaged particle acceler-

7 These configurations correspond to an ensemble where the total number of par-
ticles N is a constant.
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Fig. 7. Importance of local fluctuations in number and volume fraction on average
particle acceleration: (a) Local measurement volume Vm in PR-DNS of a homoge-
neous gas-solid flow, and (b) Scatter plot of locally averaged particle acceleration
from different measurement volumes Vm.

ation F (Vm) from in different measurement volumes Vm with the correspond-
ing local solid volume fraction in those measurement volumes. This scatter is
generated from FR–DNS of steady flow past a homogeneous assembly of fixed
monodisperse particles at volume fraction of 0.2 and at a mean slip Reynolds
number Rem = 100. The measurement volumes ranged from Vm = D3 to
(7.5D)3, and were chosen from different locations in the simulation domain of
length L = 12.5D with 161 particles in the box. The drag law dependence on
volume fraction is shown as a reference value, but clearly this scatter is not
captured by the first–order statistical description.

These are some of the principal modeling challenges dictated by the physics
of multiphase flows that LE models need to address. While the focus in this
review has been on modeling the particle acceleration term, similar challenges
are faced in the vaporization and collisional source terms as well. The model-
ing of collisions, coalescence and breakup is particularly challenging because
the ddf does not contain two–point information regarding the probability of
relative separation of a pair of droplets (or particles) and their relative veloc-
ity. Therefore, the collisional terms are closed to obtain a ’kinetic’ equation
following the classical approaches of Boltzmann and Enskog. However, com-
pared to molecular gases the collisions in multiphase flows are complicated by
inelastic collisions, deformation and coalescence (of droplets), and the presence
of carrier fluid. Quantitative information from FR–DNS that includes all these
effects will be needed to assess current models and to examine the validity of
scale separation implicit in them. The development of such LE models can be
aided by the following guiding principles.
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4.4 Guiding Principles

LE models should respect the consistency conditions (cf. Sec. 3.7) arising
from the equivalence between the random–field and point–process statistical
descriptions, and should be consistent with the implied moment closures in
both approaches (cf. Fig. 1). As such it is easy to ensure Galilean–invariance
of LE models if they are formulated in the particle method solution, whereas
this needs to be carefully checked in EE models. Finally, all LE sub–models
should be formulated such that they are independent of numerical parameters.
Often LE implementations are not numerically convergent because the sub–
models are formulated by including numerical parameters in such a way as to
preclude an asymptotic solution in the limit of infinite numerical resolution.
If these guiding principles are followed, then the LE implementation will have
consistent sub–models and numerical convergence of the LE method can be
established.

4.5 Acceleration model

4.5.1 Deterministic acceleration models

The particle velocity evolution equation (cf. Eq. 44)

A∗ =
dV∗

dt
= Ω∗

p

(
U∗

f − V∗
)

+ g (47)

defines a class of Lagrangian models that subsumes the vast majority of mod-
els [65,21,109–111] in the literature. This model is applicable to solid particles
(although it neglects unsteady acceleration effects), and is often also used for
droplets. Note that in the case of droplets the effect of vaporization [112–115]
and droplet deformation [36,116] could also be important, but these are not
represented in this simple model. In Eq. 47, A∗ is the modeled particle accel-
eration, U∗

f and V∗ are the modeled gas phase and dispersed phase instanta-
neous velocities respectively, g is the acceleration due to gravity and Ω∗

p is a
characteristic particle response frequency 8 . The particle response frequency
depends on the drag coefficient CD, which is a function of particle Reynolds
number Rep. Models proposed in literature for Ω∗

p (see [21] for example) can
be cast in the following form:

Ω∗
p =

1

τp

f(Rep), (48)

8 The superscript ‘*’ in Eq. 47, and in the rest of this work is used to denote modeled
quantities, which are only approximations to their exact unclosed counterparts. For
example, A

∗ in Eq. 47 is a model for A in Eq. 8.
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where f(Rep) represents a functional dependence of the model for CD on
Rep. This form (cf. Eq.47) of the particle acceleration model is based on the
equation of motion of a sphere in a fluid under the influence of only drag
and body forces, whereas Maxey and Riley [117] give the complete model for
particle acceleration that accounts for the added mass effect, lift force and
Basset history terms. The models in this class differ only in terms of the
particle response frequency model, and the model for the gas phase velocity.

Since the carrier phase can be turbulent, the instantaneous gas phase velocity
is decomposed into a mean component 〈Uf〉

∗, and a fluctuating component
u′∗

f , which are related by

U∗
f = 〈Uf〉

∗ + u′∗
f . (49)

In the Lagrangian–Eulerian approach, the solution to the averaged Eulerian
equations in the gas phase yields a mean gas phase velocity 〈Uf〉

∗ while the
fluctuation in the gas phase velocity u′∗

f is modeled. Together the mean and
fluctuating gas phase velocities form a model for the instantaneous gas phase
velocity U∗

f .

The particle–velocity evolution model implemented in KIVA [21] also belongs
to the general class of Lagrangian models considered here. The particle accel-
eration A∗ in KIVA [21] is modeled as

dV∗

dt
=

3

8

ρf

ρd

|〈Uf〉
∗ + u′∗

f −V∗|

Rp
(〈Uf〉

∗+u′∗
f − V∗)CD

+ g, (50)

where Rp is the radius. The drag coefficient CD is given by,

CD =





24

Rep

(
1 +

Re2/3
p

6

)
Rep < 1000

0.424 Rep > 1000,

(51)

where the particle Reynolds number

Rep =
2ρf |〈Uf〉

∗ + u′∗
f − V∗|Rp

µf
(52)

and µf is the dynamic viscosity of the gas. From Eq.(50) one can infer the
instantaneous particle response frequency Ω∗

p as

Ω∗
p =

3

8

ρf

ρd

|〈Uf〉
∗ + u′∗

f − V∗|

Rp
CD. (53)
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Models for fluctuating gas phase velocity

Turbulence in the gas phase is usually represented by a k-ε model. This means
that in addition to the mean momentum equation in the carrier gas (Eq. 19),
the evolution for the turbulent kinetic energy (TKE) kf in the fluid phase, and
its dissipation rate εf is solved for. The form proposed in the KIVA family
of codes [21] is widely used. Han and Reitz [118] implemented the RNG k-ε
model in LE simulations, which is a more sophisticated single–phase turbu-
lence model. However, the principal issue in the context of LE simulations is
the development of multiphase turbulence models that address the modeling
challenges unique to multiphase turbulence, such as the interphase transfer
of TKE. Two–way coupling between the phases requires extension of simpler
one–way coupled models [119].

The fluctuating gas phase velocity u′∗
f is usually sampled from a joint–normal

probability density with zero mean and covariance equal to (2kf/3)δij under
the assumption that the turbulence is isotropic. This velocity is kept constant
over a time interval, called the turbulence correlation time, which is taken to
be the minimum of an eddy traverse time tR and an eddy–life time tE . At
the end of the time interval the renewal time is reached, and a new value of
fluctuating velocity u′∗

f is sampled. This is intended to capture the effect of
crossing trajectories as a particle shoots across successive eddies. Such models
for the fluctuating gas phase velocity are commonly known as eddy life time
models (ELT). Hutchinson [110], and Gosman and Ioannides [111] used a
linearized form of the equation of motion of a droplet to arrive at an eddy
traverse time tR = −τp ln(1.0 − le/(τp|U

∗
f − V∗|)), where the characteristic

length scale of the eddy le = C1/2
µ k

3/2
f /εf . They also proposed a model for

the eddy life time as tE = le/|u
′∗
f |. Ormancey [109] proposed that the time

intervals over which u′∗
f remains constant be exponentially distributed (Poisson

model), with the mean time interval equal to the Lagrangian integral time
scale of turbulence TL. The KIVA family of codes [21] uses a model similar to

Hutchinson’s but with tE = kf/εf and tR = Cps(k
3/2
f /εf)|〈Uf〉

∗ +u′∗
f −V∗|−1,

where Cps is a model constant equal to 0.16432 (= C3/4
µ ).

The foregoing discussion applies to turbulent carrier flow with dispersed–phase
particles or droplets that are smaller than the Kolmogorov scale of turbu-
lence. As was noted earlier, even laminar multiphase flows can exhibit sig-
nificant velocity fluctuations in the carrier phase merely due to the presence
of dispersed–phase particles [100] or droplets. The physical mechanisms for
these fluctuations are completely different in the two cases, and the model-
ing of these nonturbulent velocity fluctuations in the latter case is still in its
infancy.
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4.5.2 Decomposition of acceleration model into mean and fluctuation

It is useful to decompose the acceleration model A∗ into mean 〈A〉∗ and fluctu-
ating A′∗ contributions, because this identifies the implied models for mean in-
terphase momentum transfer and interphase transfer of TKE (cf. Eqs. 33, 39).
It also reveals that the Lagrangian acceleration model implies a modeled evo-
lution equation for the second moments of dispersed–phase velocity and the
Lagrangian (temporal) velocity autocorrelation of the dispersed–phase. The
model predictions of these quantities can be compared with DNS results to
assess and improve the Lagrangian acceleration model.

For simplicity if we consider a statistically homogeneous multiphase flow with
no interphase mass transfer, then the particle velocity evolution equation
(Eq. 47) can be rewritten as

dV∗

dt
=

d〈V〉∗

dt
+

dv′∗

dt
, (54)

with
d〈V〉∗

dt
= 〈A〉∗, (55)

and
dv′∗

dt
= A′∗. (56)

A model for acceleration of the dispersed phase implies an average interphase
transfer of momentum between the dispersed phase and the carrier flow. The
evolution equation for the particle velocity implies a modeled evolution equa-
tion for the ddf of fluctuating velocity (cf. Appendix A) and the second mo-
ment of fluctuating velocity Eq.(39). Fluctuations in the modeled velocity
imply an evolution of the dispersed-phase turbulent kinetic energy that is
governed by the acceleration–velocity covariance 〈A′∗v′∗〉 in statistically ho-
mogeneous flows. The deterministic model in Eq. 56 implies an acceleration–
velocity covariance model 〈A′∗v′∗〉 in terms of a ’fluid-particle’ velocity correla-
tion 〈u′∗

f v′∗〉 [9,120]. While this single–point ’fluid-particle’ velocity correlation
may admit some coarse–grained interpretation, it does not exist in any mul-
tiphase flow with finite–sized droplets or particles because fluid and particle
cannot coexist at the same physical location at the same time instant [65,121].
Stochastic models for the particle velocity increment offer a promising route
to remedy this problem.

4.5.3 Stochastic models

Evidence from FR–DNS of gas-solid flow also suggests that stochastic mod-
els for the particle velocity increment might represent particle acceleration
statistics more faithfully than deterministic models. Statistical variability in
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particle acceleration, as characterized by scatter plots of particle acceleration
and particle velocity in Tenneti et al. [15] and of particle acceleration and solid
volume fraction in Fig. 7(b), suggest that a stochastic model is more capa-
ble of capturing the physics of multiphase flow than the deterministic model
already discussed.

Stochastic models are written in terms of the particle velocity increment, such
as the following Langevin model [122]:

dV ∗
i = −β 〈Wi〉 dt − γv′∗

i dt + BdWi, (57)

where dV ∗
i is the increment in the particle velocity, v′∗

i is the fluctuation
in the particle velocity and dWi is a Wiener process increment. Fluctua-
tions in the particle velocity are defined about the mean particle velocity,
i.e. v′∗

j = V ∗
j − 〈Vj〉

∗. The first term on the right hand side of Eq. 57 accounts
for the effect of the mean slip velocity. The mean slip velocity, defined as
〈W〉 = 〈V〉∗ − 〈Uf〉

∗, is the relative velocity between the solid phase mean
velocity and the fluid phase mean velocity. The second term in Eq. 57 accounts
for the fluctuation in particle velocity and the last term models the effect of
hydrodynamic interaction with neighboring particles. The coefficient γ is the
inverse of the Lagrangian particle velocity autocorrelation time. It quantifies
how long a particle retains memory of its initial velocity. These coefficients
are functions of volume fraction (φ), mean flow Reynolds number (Rem) and
particle to fluid density ratio (ρp/ρf). FR–DNS of freely evolving suspensions
where particles move under the influence of the surrounding fluid and inter-
particle collisions can be performed using the DNS methodology to extract a
functional form for the Langevin model coefficients.

4.5.4 Mean momentum transfer

The nonlinear dependence of particle acceleration on particle velocity is fully
represented in the LE model (cf. Eq. 50). The interphase mean momentum
source term in Eq. 20 corresponding to the LE acceleration model given by
Eq. 50 can be calculated using Eqs. 24, 30, 26–27. It is noteworthy that the
time scale associated with the mean acceleration 〈A〉∗/〈V〉∗ is not the recip-
rocal of

〈Ω∗
p〉 =

3

8

ρf

ρd

〈
|〈Uf〉

∗ + u′∗
f − V∗|

Rp

CD

〉
,

but represents a weighted integral over the distribution of all particle response
time scales.
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4.5.5 Dispersed–phase velocity fluctuations

Here we first consider the case of dispersed–phase particles or droplets smaller
than the Kolmogorov scale of carrier flow turbulence evolving in a dilute flow
with elastic collisions (or negligible collisional dissipation). Pai and Subrama-
niam [14] showed that one of the drawbacks of the acceleration model given by
Eq. 50 is its inability to reproduce the trends in decay of velocity fluctuations
with Stokes number that are observed in PP–DNS of homogeneous turbulent
two–phase flow [65]. This is because the acceleration model implies an equation
for the trace of the second moment of the dispersed–phase velocity fluctuations
that evolves on the particle or droplet response time scale τp = 2ρdR

2
p/9µf . In

reality, particles or droplets respond differently to gas–phase turbulent eddies
depending on the ratio of the particle or droplet response time to the eddy
turnover time. Pai and Subramaniam [14] proposed a different model for the
droplet velocity fluctuation v′∗,

dv∗′

dt
=

u′∗
f − v′∗

〈τint〉
, (58)

that evolves on a 〈τint〉 multiscale interaction time scale.

Multiscale interaction timescale model

In the spectral description of particle-turbulence interaction, a dispersed par-
ticle interacts with a range of eddies which in turn corresponds to a range
of wavenumbers in the fluid phase TKE spectrum. One may define a Stokes
number Stκ as the ratio of the particle response timescale τp to the timescale
τκ corresponding to the eddies of wavenumber κ. Some eddies (say, type A) in
this range have a timescale such that Stκ > 1, while the others (say, type B) in
this range have a timescale such that Stκ < 1. The hypothesis behind the mul-
tiscale interaction timescale is that the timescale of interphase energy transfer
is not the same when the particle interacts with the two types of eddies. Let us
suppose that the particle is interacting with eddies of type A. Since Stκ > 1 for
these eddies, the timescale τκ over which the eddy loses energy is smaller than
the timescale τp over which the particle loses energy. In other words, the larger
particle response timescale limits the transfer of energy between the particle
and the eddy. Consequently, the timescale for interphase energy transfer at
this scale is determined more by the particle response timescale. Now let us
consider the case where the same particle interacts with an eddy of type B.
Since Stκ < 1, the timescale τκ over which the eddy loses energy is greater
than the timescale τp over which the particle loses energy. In other words, the
larger eddy timescale limits the transfer of energy between the particle and
the eddy. Consequently, the energy transfer between the particle and the eddy
at this scale is determined more by the eddy timescale τκ. Thus, the effective
timescale for particle-turbulence interaction is obtained by integrating the ef-
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fects of the two wavenumber ranges identified above over the energy spectrum
of fluid-phase turbulence in the two-phase flow. The multiscale interaction
timescale 〈τint〉 presented here is a single-point analogue of the above spectral
model.

Let u′∗
f be a model for the Eulerian gas-phase velocity fluctuation in Eq. 49

(an example is given in Eq. 64). If z is the sample-space variable corresponding
to the random variable Z = |u′∗

f |, the multiscale interaction timescale 〈τint〉 is
given as

〈τint〉 =
∫ ∞

|u|†
〈τint|Z = z〉fZ(z)dz +

∫ |u|†

0
τpfZ(z)dz, (59)

where fZ(z) the pdf of Z. The conditional mean 〈τint|z〉 is given as

〈τint|z〉 = Stl (τp − τ) + τ (60)

for |u|† ≤ |u′∗
f | ≤ ∞, while 〈τint|z〉 = τp for 0 ≤ |u′∗

f | ≤ |u|†. Here, a Stokes
number valid in the inertial range is given as

Stl =
τp

τl
, (61)

where τl is computed as

τl =
|u′∗

f |
2

εf
. (62)

In order to complete the specification of the multiscale interaction timescale,
the pdf of |u′∗

f | is required. Using Eq. 64 the pdf of u′∗
f can be computed

directly from the solution. However, if u′∗
f is assumed to obey a joint normal

distribution with zero mean and covariance σ2
fδij, where σ2

f = (2/3)kf and δij

is the Kronecker delta as is done in recent studies [14,123], then the pdf of
Z = |u′∗

f | is

fZ(z) =

√
2

π

1

σ3
f

z2 exp−z2/2σ2
f . (63)

As noted above, Eq. 62 is based on an inertial sub-range scaling where eddies
have a characteristic length scale l. The Stokes number Stl defined in Eq. 61
using the characteristic length scale is the single-point analogue of Stκ. For a
value of Stl > 1, the particle responds slowly to the eddies and the timescale
of energy transfer is influenced more by the particle response time τp. On the
other hand, if Stl < 1, the particle responds immediately to the flow, and the
timescale of energy transfer is influenced more by the eddy turnover timescale
τ . Thus, the pdf of |u′∗

f | (see Fig.8 for a Gaussian u′∗
f ) can be divided into two

regions: one that represents Stl > 1, and the other that represents Stl < 1,
with |u|† representing the transition between the two regions at Stl = 1. Thus,
|u|† is uniquely determined by the relation (|u|†)2 = τpεf .
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Fig. 8. A schematic probability density function of |u′∗
f | that is used in the derivation

of the multiscale interaction timescale 〈τint〉. The sample space variable correspond-
ing to |u′∗

f | is z.

It is interesting to note that Eq. 59 has the correct behavior for limiting values
of Stl and |u|†. In the limit |u|† → 0, there are no eddies in the system with
Stl > 1. The dispersed particles are simply convected by the flow and the
correct timescale for interphase TKE transfer in this limit is τ . In the limit
|u|† → ∞, practically all the eddies in the system satisfy Stl > 1, which
implies that there are no eddies energetic enough to convect the particles.
The correct timescale for interphase TKE transfer in this limit is the particle
response timescale τp.

The multiscale interaction time scale model as implemented in the LE frame-
work by Pai and Subramaniam [14] correctly reproduces the DNS trends in
decay of velocity fluctuations with Stokes number for homogeneous turbulent
two–phase flow with zero mean slip velocity. Note that this is still a determin-
istic model that results in the anomalous ’fluid–particle’ velocity correlation.
A stochastic version of the same model that incorporates the multiscale in-
teraction time scale concept but that does not result in the anomalous ’fluid–
particle’ velocity correlation is described in the following section. In a general
multiphase flow problem the effects of inhomogeneous mean flow and gravity
introduce additional phenomena that manifest as anisotropy in the second
moments of droplet fluctuation velocity.
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4.6 Position evolution model

The simplest position evolution model is (cf. Eq. 43),

dX∗

dt
= V∗

but in some works it is modified to include a random term [124]. The justifica-
tion for adding this random term is to represent the effect of droplet dispersion
due to random motion of the turbulent eddies. It is well known that adding
a random term (Wiener process increment, to be precise) makes the position
evolution equation (Eq. 43) a stochastic differential equation (SDE). The cor-
responding change to the modeled ddf evolution equation is the addition of a
term representing diffusion in physical space (as in the Fokker-Planck equation
corresponding to the SDE [125]).

It is well established from analyses of the system of SDE’s that arise in both
turbulent single-phase flows and Brownian dynamics, that diffusion arises from
the effect of velocity auto-correlation. In the limit of rapid momentum relax-
ation, the system of equations can be simplified to a Langevin equation for
position [126]. In earlier works this physical criterion was often presented as a
restriction on the minimum time step size, which is incorrect because the time
step is a numerical parameter. The assumption of fast momentum relaxation
is generally not applicable to spray droplets because that would imply that
the droplet velocity distribution relaxes to an equilibrium Maxwellian distri-
bution, which is obviously not true for the strongly non-equilibrium situation
in sprays. Also retaining the velocity SDE and position SDE will result in two
sources of diffusion, which in turbulent single–phase flows can be meaning-
fully interpreted as the sum of molecular diffusion in the position equation
and turbulent diffusion in the velocity equation. A similar analogy has not
been established for sprays and no interpretation is given for the two differ-
ent sources of diffusion. In the following section, a summary of approaches to
modeling particle or droplet dispersion is presented.

4.6.1 Droplet Dispersion

Dispersion of spray droplets and the modulation of turbulence in the ambient
gas by the dispersing droplets are two coupled phenomena that are closely
linked to the evolution of global spray characteristics, such as the spreading
rate of the spray and the spray cone angle. PP-DNS of turbulent gas flows
laden with sub-Kolmogorov size particles, in the absence of gravity, report that
dispersion statistics and turbulent kinetic energy (TKE) evolve on different
time scales.
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Particles with high Stokes number lose energy faster than particles with low
Stokes number in freely decaying turbulence [65]. On the other hand, particles
with high Stokes number lose correlation with their initial velocities slower
than particles with low Stokes number in stationary turbulence [45,41]. The
disparate behavior of the velocity autocorrelation and TKE time scales affects
the dispersion characteristics of a spray.

Furthermore, each time scale behaves differently with Stokes number, a non-
dimensional flow parameter (defined in this context as the ratio of the particle
response time to the Kolmogorov time scale of turbulence) that characterizes
how quickly a particle responds to turbulent fluctuations in the carrier or gas
phase.

Lu [127] uses a time-series analysis involving fluid-phase temporal and spa-
tial Eulerian velocity correlations to arrive at a stochastic model for the fluid
velocity at the particle location, in the limit of one-way coupled turbulence.
Spray droplet interactions with the gas phase are, however, strongly two-way
coupled. Nevertheless, testing the behavior of a two-phase model in the limit
of one-way coupled spray configurations is indeed necessary. Lu reports good
agreement between model results and theoretical results of Csanady [128], and
particle-laden grid-generated turbulence results of Snyder and Lumley [129] in
predicting particle diffusion coefficients and velocity autocorrelations. Mashayek [45]
used Lu’s time-series approach to predict particle-velocity autocorrelation
functions and asymptotic diffusion coefficients for non-evaporating and evapo-
rating droplets laden in one-way coupled stationary turbulence, again report-
ing overall reasonable agreement with PP–DNS data [130]. An extension of the
time-series model has been tested by Gao and Mashayek [131] in compressible
homogeneous shear flows with interphase mass transfer due to evaporating
droplets. They report good agreement of predicted droplet velocity correla-
tions and droplet-fluid velocity cross-correlations with PP–DNS of evaporat-
ing droplets in a low Mach number turbulent shear flow [44]. Pozorski and
Minier [132] modified the Lagrangian integral time scale in the generalized
Langevin model proposed by Haworth and Pope [133] to arrive at the fluid
velocity “seen” by the particles. To our knowledge, no validation tests are
available in the literature that quantify the predictive capability of this model
in canonical particle-laden flows. Chagras et al. [134] employ a Langevin-type
equation that uses the Lagrangian integral time scale of the fluid “seen” by
the particles and the fluid-phase Reynolds stresses to arrive at a model for u′

f .
They analyze several cases of two-way coupled gas-solid pipe flow with large
mass loading and report overall agreement of temperature profiles and instan-
taneous velocities with experimental results. Chen and Pereira [135] use an
assumed probability density function (pdf) for the spatial distribution of the
particles whose variance evolves in time by an ordinary differential equation
containing an assumed fluid-phase Lagrangian velocity autocorrelation of the
Frenkiel form [136]. They report good match of predicted dispersed-phase ve-

47



locities from their two-way coupled simulations with results from experiments
conducted on particle-laden planar mixing layers and co-flowing planar jets.
With the exception of Mashayek [45], there is no evidence in the literature
of tests conducted with the aforementioned models in simple canonical two-
phase flows (such as stationary or freely decaying particle–laden turbulence)
to test their capability in simultaneously capturing the energy and dispersion
time scales as observed in PP–DNS. However, the time series model [127] used
by Mashayek [45] relies on statistics of the fluid phase that are valid only in
the limit of one-way coupled two-phase flows. Extending the time series model
to two-phase flows with significant two-way coupling effects will require the
knowledge of the Eulerian spatial correlation of gas-phase velocity which is a
non-trivial quantity to measure or model in such flows. Also, the extension
of the time-series model proposed by Gao and Mashayek [131] involves corre-
lations among the velocity components, temperature and mass fraction, with
the assumption that all these correlations evolve on the same Eulerian fluid
integral time scale.

Coupled stochastic model

The coupled stochastic model (CSM) for homogeneous turbulent two–phase
flows consists of two coupled stochastic differential equations (SDE) for the
modeled fluctuating Lagrangian gas–phase velocity u and fluctuating La-
grangian dispersed–phase velocity v. This model possesses a unique feature
that the implied TKE and velocity autocorrelation in each phase evolve on
different time scales. Consequently, this model has the capability of simul-
taneously predicting the disparate Stokes number trends in the evolution
of dispersion statistics, such as velocity autocorrelations, and TKE in each
phase. Predictions of dispersion statistics and TKE from the new model show
good agreement with published PP–DNS of non-evaporating and evaporating
droplet-laden turbulent flow.

The proposed system of SDEs in CSM is

du′∗
f,i = −

[
1

2τ1
+
(

1

2
+

3

4
C0

)
εf

kf

]
u′∗

f,idt +

[
C0εf +

2

3

kf

τ1
+

2

3

(
ke

f − kf

τ2

)]1/2

dW u
i

(64)

dv′∗
i = −

1

2τ3

v′∗
i dt +

[
2

3

kd

τ3

+
2

3

(
ke

d − kd

τ4

)]1/2

dW v
i , (65)

where τ1, τ2, τ3 and τ4 are time scales that appear in the drift and diffusion
coefficients 9 of each SDE, while dW u

i and dW v
i are independent Wiener pro-

9 The terms ‘drift’ and ‘diffusion’ are used in the sense of stochastic differential
equation theory.
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cesses [137]. The subscript i denotes the Cartesian components. The TKE in
the dispersed phase is denoted kd and the TKE in the gas phase is denoted
kf , with a superscript ‘e’ to denote their ‘equilibrium’ values (the concept of
‘equilibrium’ is explained in [123,14]) 10 . Also, εf is the gas–phase dissipation
enhanced by the presence of the dispersed phase. The constant C0 = 2.1,
which is identical to that used in the Simplified Langevin model (SLM) [61].
Mean velocity and, hence mean slip in either phase is assumed to be zero for
simplicity, although this is not an inherent limitation of CSM. The fluid–phase
SDE can be viewed as an extension of the SLM [61,138] to two–phase flows,
but with an important difference being the introduction of drift and diffusion
time scales that are different from each other. Also, additional terms involving
ke

f and ke
d (in parentheses) that represent interphase interactions have been

added. The coupling between the two phases is only through moments of the
velocities in each phase like TKE (kf and kd) and the dissipation εf , and not
explicitly through the instantaneous values of u′∗

f,i and v′∗
i .

Note that for widely–used LE models, the interphase TKE transfer evolves
on the particle response time scale τp, which was found to be inadequate
to capture the multiscale nature of particle–turbulence interaction [14]. The
specification of the drift time scales τ1 and τ3 in Eqs. 64– 65 is summarized
here. Detailed justification for these choices are given in [139]. The specification
for the drift time scale τ3 is

1

τ3
= 2

[
1

2τ1
+
(

1

2
+

3

4
C0

)
1

τ

]
1

1 + StηC3
, (66)

where C3 is a model constant (C3 = 0.1) and τ = kf/εf is the fluid-phase
eddy turnover time scale. This specification for τ3 obeys the correct limiting
behavior in the limit of zero Stokes number (Stη → 0), where the droplets
respond immediately to the surrounding fluid and the fluid–phase velocity
autocovariance and the dispersed–phase velocity autocovariance must match.
The drift time scale τ1 is prescribed to be

1

τ1
=

C1φ

τ
,

where C1 is a model constant (C1 = 0.5). In the limit of zero mass loading,
the time scale τ1, which essentially represents the modification to the fluid
velocity autocorrelation time scale due to the presence of dispersed phase,
should tend to infinity. In this limit the drift time scale in Eq. 64 approaches
the specification for the single–phase simplified Langevin model [61].

The time scales τ2 and τ4 govern the evolution of TKE in each phase, which

10 The subscript f stands for the gas phase or fluid phase, and the subscript d stands
for the dispersed phase.
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are

dkf

dt
= −

kf − ke
f

τ2
− εf (67)

dkd

dt
= −

kd − ke
d

τ4
. (68)

In accordance with the EoE concept, and to introduce the capability to capture
the multiscale nature of a turbulent two–phase mixture into DLM, the time
scales τ2 and τ4 are chosen to be equal to τπ = 〈τint〉/Cπ, where 〈τint〉 is a
multiscale interaction time scale for interphase TKE transfer first proposed
by [14]. It was shown in [14] that the new time scale accurately captures the
dependence of the interphase TKE transfer on Stη. This time scale has been
successfully employed in the context of EE two–phase turbulence modeling by
[123]. The constant Cπ is chosen to be 2.5.

4.7 Other submodels

There are many other physical phenomena that are important in multiphase
flows, including heat transfer, vaporization, and collisions. These require sub–
models that need to be incorporated into the LE simulation code. Consid-
erable progress has been made in modeling these physical phenomena using
Lagrangian sub–models. These sub–models are not discussed here because au-
thoritative reviews are available for the interested reader. The development
of a predictive LE simulation will require systematic testing of each of these
sub–models using the criteria and guiding principles described in Section 4.4.

5 Numerical Solution

In LE simulations that are a particle method solution to the modeled ddf
evolution (PP–DNS(s) and RANS in Table 1), the ensemble of Ns surrogate
droplets is indirectly represented by Nc computational particles (also called
’parcels’ in the spray literature). The number of computational particles Nc

does not necessarily have to equal the average number of physical particles
or droplets 〈Ns〉 that is represented by the ddf 11 . To reduce computational
cost Nc is chosen to be smaller than 〈Ns〉 (sometimes by even several orders
of magnitude), and the correspondence between the computational represen-
tation and the surrogate ensemble is enforced at the level of the modeled

11 The average number of physical particles or droplets 〈Ns〉 is the same in the
physical system and the surrogate ensemble, so we do not distinguish between the
two when it is not necessary.
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ddf [107]. This reduction in computational cost is accomplished by assigning
a statistical weight to the computational particles, and it is a valid approach
as long as the computed solution converges to the modeled ddf that evolves
by Eq. 40.

These Nc computational particles are represented in a Lagrangian frame at
time t by a set of properties {X(i)

c (t),V(i)
c (t), R(i)

c (t), W (i), i = 1, . . . , Nc(t)},
where X(i)

c (t) denotes the ith computational particle’s position, V(i)
c (t) its ve-

locity, R(i)
c (t) its radius, and W (i) its statistical weight. The statistical weight

is defined as the average number of droplets represented by a computational
particle. The summation of statistical weights over all computational particles
equals the expected total number of droplets

Nc(t)∑

i=1

W (i) = 〈Ns(t)〉 . (69)

As already noted earlier, the surrogate droplets (or particles) do not have to
evolve identically to their physical counterparts because the equivalence of the
modeled surrogate system and physical system is in a (weak) statistical sense
(sample paths do not have to match). Since the Nc computational particles
efficiently solve the evolution of the surrogate ensemble, they too do not have
to evolve identically to their physical counterparts. If the statistical weighting
is uniform in position, velocity and radius space, then the computational par-
ticles evolve identically to their surrogate counterparts as given by Eqs. 43–45.
The position, velocity and radius of the computational particles evolve by

dX(i)
c

dt
= V(i)

c (70)

dV(i)
c

dt
= A(i)

c = A∗(i) (71)

dR(i)
c

dt
= Θ(i)

c = Θ∗(i) (72)

dW (i)(t)

dt
= −ω(i)(t)W (i)(t) , , i = 1, . . . , Nc(t), (73)

where A(i)
c is the instantaneous acceleration experienced by the ith computa-

tional particle, Θ(i)
c is the rate of change of partice radius due to vaporization,

and ω(i) represents the fractional rate of change of statistical weight. Note
that the statistical weights may evolve in time, although in traditional LE
simulations they do not [107]. In some LE spray simulations [21] the statis-
tical weight initially assigned to the computational particle depends on the
droplet radius so as to preferentially sample larger radius drops relative to
smaller ones [140,21]. This procedure is called ’importance sampling’ and it
is often used solely in the initialization procedure (as in Refs. [21]), in which
case the sampling can degrade in time [140]. If it is desired that a particular
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weight distribution be maintained at all time, then in that case the evolution
equations for the computational particle can differ from their counterparts in
the surrogate droplet ensemble so as to maintain equivalence at the level of
the modeled ddf [141].

Interpretation of Results: Based on the preceding discussion, it is clear that
it is not meaningful to compare scatter plots of computational particles from
a single realization of LE simulation with instantaneous snapshots of spray
droplets or solid particles from spray or particle-laden experiments because
computational particles in the LE simulation can have different statistical
weights. It is only meaningful to compare moments (e.g., average, covariance)
and other statistical quantities once numerical convergence of the LE simula-
tions have been established.

5.1 Numerical Convergence

Numerical convergence and accuracy of LE simulations have been critically
examined by many researchers [23,24,142,143]. Accurate calculation of the in-
terphase transfer terms (corresponding to mass, momentum and energy, cf.
Eqs. 25–31) that couple the Lagrangian particle representation to the Eule-
rian gas–phase equations is crucial for predicting qualitatively correct physical
behavior, as well as for quantitative comparison with experiments or higher
fidelity simulations. One of the principal differences between numerical con-
vergence of LE simulations and standard Eulerian CFD simulations is that in
addition to the grid resolution and time step that are numerical parameters
common to both simulations, the number of computational particles Nc is an
additional numerical parameter in LE simulations.

In traditional LE (TLE) simulations [83,144,145,48] the dispersed phase is
represented by a fixed number of computational particles. If a fixed number of
computational particles Nc is used to represent the dispersed phase on a grid
with total number of grid cells M , then the statistical error in a grid–based
estimate of any mean field quantity increases with grid refinement, resulting in
a non–convergent LE simulation. This is because as the grid is refined, fewer
and fewer particles are available in each grid cell to form the grid–based mean
field estimate. Note that for fixed Nc, the nominal number of particles per
grid cell Npc = Nc/M decreases as the grid is refined. Therefore the statistical
error, which is inversely proportional to the square root of number of particles
per cell, increases. This increase in statistical error eventually overwhelms the
reduction in spatial discretization error that is achieved by grid refinement.
As a result, the total numerical error increases with grid refinement leading
to non–converged TLE solutions.
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The other issue with numerical convergence of LE simulatios pertains to the
spatial distribution of computational particles. In many multiphase flow prob-
lems, especially with finite Stokes number droplets or particles, the spatial
distribution of physical droplets or particles can be highly nonuniform. Figure
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Fig. 9. Snapshot of a one–way coupled lid–driven cavity flow simulation at
non–dimensional time tU/L equal to 10. The important flow parameters are
Re = UL/ν = 100, St = τp/τF = 0.8. The solid lines represent the fluid phase
stream function contours and black dots represent the dispersed–phase particles.

9 shows the spatial distribution of particles in lid–driven cavity flow simu-
lation for a Stokes number equal to 0.8. It can be seen that the particles
have preferentially concentrated in regions of the flow field with high rate of
strain. Therefore, for finite Stokes number, the computational particles also
preferentially concentrate just like the real particles. In TLE simulations the
computational particles follow this nonuniform distribution, resulting in high
statistical error in regions populated by few particles, and solutions that do
not converge with grid refinement [107].

The problem of LE numerical convergence is now briefly described and solu-
tions to ensure numerical convergence and accuracy are outlined. For two–way
coupled multiphase flows, accurate calculation of the interphase transfer terms
is necessary for proper representation of the flow physics in an LE simula-
tion. As an example let us consider the mean interphase momentum transfer
term 〈Ffd(x, t)〉 in Eq. 15 for a monodisperse particle–laden flow, which needs
to be accurately computed from the LE solution, i.e., the mean fluid veloc-
ity field Uf(x, t), and the position and velocity of the computational parti-
cles {X(i)

c (t),V(i)
c (t), i = 1, . . . , Nc}. The mean interphase momentum transfer

term 〈Ffd(x, t)〉 at Eulerian grid nodes is estimated from this solution data in
two steps:
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(1) Calculation of particle forces f (i)
c :

This requires calculation of the fluid velocity at the particle location
U(f)(X(i)

c , t) in Eq. 75 from the fluid velocity at Eulerian grid nodes.
The numerical estimate of the fluid velocity field U(f)(x, t) at the par-
ticle location X(i)

c using a representation of U(f) at M grid nodes is

denoted
{
U(f)(Xc(i), t)

}
M

, and is obtained through forward interpola-

tion/approximation as:

{
U(f)(X(i)

c , t)
}

M
= F

{
U(f)

m , m = 1, . . . , M ;X(i)
c

}
, (74)

where the fluid velocity at the mth Eulerian grid node is denoted U(f)
m , and

F is a generic interpolation/approximation operation. The particle force

f (i)
c is then obtained by substituting

{
U(f)(X(i)

c , t)
}

M
for U(f)(X(i)

c , t) in

a general form of the particle force model that subsumes different drag
force correlations, which reads:

f (i)
c (t) = f

(
U(f) (Xc(i)(t), t) ,V(i)

c , ρf , νf , ρp, Dp

)
, (75)

where ρf and νf is the fluid phase density and kinematic viscosity, re-
spectively.

(2) Mean interphase momentum transfer Ffp(x, t) from particle forces f (i)
c :

The numerical procedure to calculate the Eulerian mean field Ffp(x, t)
from particle data {X(i)

c (t), f (i)
c (t), i = 1, . . . , Nc} is describe variously as

mean estimation from particle data, projection of fluid–particle interac-
tion forces onto the Eulerian grid, or backward estimation. The numerical
estimate for the mean interphase momentum transfer 〈Ffd(x, t)〉 at the
mth Eulerian grid node is denoted {Ffd

m }, and the general form of its
estimate from the particle data is:

{Ffd
m } = E

{
X(i)

c , f (i)
c , W (i), i = 1, . . . , Nc(t)

}
, (76)

where E like F is another generic interpolation/approximation operator.

Numerical error in the interphase momentum transfer calculation arises from
both forward interpolation/approximation of fluid velocity at grid nodes to
particle locations, and from backward estimation of the interphase momen-
tum transfer term at particle locations to grid nodes. Both forward interpo-
lation [146,147,48] and the calculation of mean fields from particle data [148–
150,144,145,83,151] have been studied by other researchers. Garg et al. [106]
also proposed and validated a model for the numerical error incurred in calcu-
lating the interphase transfer terms by decomposing the error into statistical,
bias and discretization components [106]. They explicitly characterized the
total numerical error ǫF in calculating the interphase force {Ffd

m } in terms of
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numerical parameters (grid size M and number of particles per cell Npc) as:

ǫF =
cFθ√
Npc

+
bF (M)

Npc

+
aF

Mp
,

where aF , bF and cF are coefficients that characterize the spatial discretiza-
tion error, bias error, and statistical error, respectively. The error model shows
that in order to obtain numerically converged results, it is imperative to si-
multaneously reduce the statistical and deterministic error components that
result from backward estimation. The bias and statistical error components
depend on the number of particles per cell. Therefore, numerical convergence
cannot be achieved by grid refinement with a fixed total number of compu-
tational particles because the number of particles per cell keeps decreasing.
This is because the bandwidth of most numerical schemes scales with the grid
spacing.

Garg et al. [106] performed comprehensive tests of numerical schemes used
to calculate mean interphase transfer terms in LE simulations using a test
problem that admits an analytical solution. This allowed characterization of
numerical convergence as well as accuracy. They demonstrated that with very
high number of particles per cell (100 to 400), and with multiple independent
realizations (100 to 400), the various schemes they tested are indeed numeri-
cally convergent and accurate for the simple static test problem they devised.
Such high numerical resolution is impractical in LE simulations of realistic
multiphase flows, where typical values for the nominal number of particles
per cell Npc in 3–D LE simulations range from 0.0156 to 0.125 in Sundaram
and Collins [65] to exactly 1 in Boivin et al. [48]. In 2–D calculations higher
Npc values have been used: 3 to 30 in Narayanan et al. [151] and 16 to 500
in Lakehal and Narayanan [142]. In all but one of these studies Lakehal and
Narayanan [142], only one realization is simulated. Garg et al. [106] found
that for realistic resolution using 5 particles per cell with only one realization,
some schemes can give errors as high as 80% [106] . They also found that
alternative numerical schemes that employ kernel–based estimators to decou-
ple the calculation of mean particle fields from the Eulerian grid resulted in
total numerical error of only 20% at the same resolution, and these are briefly
described in the next sub–section.

5.2 Grid-free estimation

A key ingredient to the solution of the LE numerical convergence problem is
the use of grid–free kernel–based estimators that Garg et al. [106] adapted from
particle methods for PDF–based approaches to turbulent reactive flows [152,153].
Similar ideas have been used in collision calculations, such as the ’collision
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grid’ concept [26]. The particular grid–free estimator that Garg et al. [106]
used to demonstrate accuracy and convergence in LE simulations is a two–
stage estimator (TSE) algorithm developed by [152]. For forward interpolation
it uses a second–order Lagrange polynomial interpolation scheme that is for-
mally second–order accurate, and which is essentially a trilinear interpolation
scheme that is identical to the PNN method [144,145,48]. For backward estima-
tion it employs a grid-free two–stage algorithm. In the first stage, it estimates
weighted values of the particle property using a linear kernel of user–specified
bandwidth (e.g., interphase force) at knot locations that depend on where
the particles are located. The second stage involves least–squares fitting of
locally linear or quadratic functions to these knot values. The advantage of
this method is that its convergence characteristics are not tied to the Eulerian
grid (in fact it does not need an Eulerian grid at all!), but by adjusting the
bandwidth of the kernel the user can balance the contribution from truncation
and statistical errors.

While kernel–based grid–free estimation reduces statistical error independently
of the grid resolution and facilitates convergence, it does not address the issue
of large numerical errors arising from spatial nonuniformity in the distribution
of computational particles as shown in Fig. 9.

5.3 Improved LE simulation method

The non–convergence of TLE simulations for spatially non–uniform particle
distributions such as those shown in Fig. 9 for a lid–driven cavity problem
has led to the development of the improved LE (ILE) simulation method.
The ILE simulation uses a computational particle number density control
algorithm which is similar to those used in various other particle–based sim-
ulations [4,154,153,155,156]. The computational particle number density con-
trol algorithm ensures a near–uniform distribution of computational particles
during the entire course of simulation. However, as a result of ensuring near–
uniform distribution of computational particles, the statistical weights now
need to be evolved in time in order to solve the same physical system. It is
achieved by annihilating (in case of excess) and cloning (in case of deficient)
computational particles in each cell, resulting in nominally equal number of
computational particles per cell at all times [3]. Thus, the ILE method ensures
that the statistical error remains nearly spatially uniform. The computational
particle number density control procedure relies on the principle of statisti-
cal equivalence between the ILE computational ensemble (with unequal and
time–evolving statistical weights) and the modeled ddf representation of the
physical system.

Analogous to the modeled ddf f ∗(x,v, r, t) that was defined earlier for the sur-
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rogate droplets, a weighted density function h(x,v, r, t) for the computational
particles is defined as

h(x,v, r, t) ≡

〈Nc(t)∑

i=1

W (i)δ(x − X(i)
c (t))δ(v − V(i)

c (t))δ(r − R(i)
c (t))

〉
. (77)

The validity of using computational particles rests on the equivalence between
h and f ∗ at all time. Statistical equivalence is ensured by enforcing consistency
at all times between

(i) the number density implied by the computational ensemble and the num-
ber density corresponding to the physical system, and

(ii) the particle velocity distribution implied by the computational ensem-
ble and the particle velocity distribution corresponding to the physical
system.

The combination of ILE with the kernel–based grid–free TSE estimator is
shown to yield accurate solutions to a two–phase flow test problem that admits
an analytical solution for the mean interphase momentum transfer term [107].
The same ILE approach is also successful in maintaining near–uniform compu-
tational particle number density, resulting in a numerically convergent solution
to the particle–laden lid–driven cavity problem [107]. It is worth noting that
with an efficient parallelization strategy based on domain decomposition, the
ILE simulations result in better load–balancing than the TLE simulations.
Therefore, the combination of ILE with the TSE estimator is shown to be a
promising approach to obtain numerically convergent and accurate results for
LE simulation of multiphase flows.

5.4 Summary of LE numerical solution

(1) The two major limitations of TLE simulations: (i) increase in statistical
error with grid refinement, and (ii) non–uniform spatial distribution of
statistical error, are effectively addressed by kernel–based grid–free esti-
mation using TSE, and the ILE approach that maintains a near–uniform
spatial distribution of computational particles.

(2) As noted earlier, numerical non–convergence of LE simulations often re-
sults from LE sub–models that are not numerically consistent, i.e. such
sub–models do not admit a unique solution to the modeled ddf in the
limit of numerical parameters tending to their asymptotic values becase
these sub–models have numerical parameters mixed up with physical pa-
rameters. This is easily remedied by appropriately reformulating the sub–
model to ensure it is numerically consistent, and the modeling deficiency
should not be misinterpreted as indicative of any fundamental difficulty
in obtaining numerically converged LE solutions.
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(3) Although ILE with TSE results in numerically converged and accurate
solutions for a given particle force model, it does not address the larger
question of what constitutes an accurate coarse–graining of particle forces
from a FR–DNS? For instance, Moses and Edwards [84] showed that the
particle force computed from FR–DNS is better represented by a doublet,
rather than a point force. It is also not clear whether the pressure field in
the Eulerian representation of the carrier flow is an appropriate coarse–
graining of the pressure field from FR–DNS.

(4) In particle method solutions to turbulent reactive flows a consistency re-
quirement is imposed at the end of each time step to reconcile the particle
representation to the implied mean fields [4], whereas the same has not
received as much attention in LE simulations. The decoupled advance-
ment of Eulerian carrier–phase equations and Lagrangian equations for
computational particle properties over a time step, and any dependence
of the numerical solution on the sequence in which these equations are
advanced, needs to be examined more closely.

(5) Numerical studies of LE simulations reveal that the numerical schemes
used to advance the computational particles can strongly influence higher
order statistics, such as nearest neighbor distance and pair correlation
statistics (of the computational particles) [157]. This can be significant
for LE simulations that use particle interaction models.

(6) The foregoing discussion on LE numerical solution is restricted to LE with
RANS for the Eulerian carrier flow or PP–DNS(s) in Table 1, but other
considerations could prevail for the other LE simulation approaches.

6 Lagrangian–Eulerian simulations of multiphase flow

Selected LE simulations representative of the state–of–the–art are highlighted
in this section. Figure 10 shows LE simulations (of type LES(p) in Table 1) of
a gas–solid flow in the riser section of a fluidized bed by Desjardins’ group.
The gas phase is solved using an LES formulation with the standard dynamic
Smagorinsky subgrid model [158]. Particles evolve by a modeled drag law and
interact on contact according to a modified version of Cundall and Strack’s
soft–sphere discrete element model [58]. This simulation uses 1, 536, 000 grid
cells for the gas phase with 266, 760 particles and takes approximately 11, 520
CPU hours (5 days) on 96 cores.

Figure 11 shows LE simulations (of type PP–DNS(p) in Table 1) of a droplet–
laden mixing layer by Bellan’s group [52]. The gas phase is solved using a
DNS formulation, while the droplets are modeled as point sources of mass
and momentum and energy. Collisions are neglected because the flow is di-
lute (volumetric loading is O(10−3) and mass loading is 0.2). This simulation
uses 288 × 320 × 176 grid cells for the gas phase with 2, 993, 630 drops and
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Fig. 10. Example of an LE simulation of gas–solid flow showing particles in a riser.
The flow is established by imposing a uniform pressure gradient in the fluid phase
in the vertical direction. The gas phase is solved using an LES formulation while
particles evolve by a drag law and undergo soft–sphere collisions, corresponding to
an LE simulation of type LES(p) (cf. Table 1).

takes approximately 2252 CPU hours on 64 processors of an SGI Origin2000.
Variants of the LE approach as described in Table 1 have been developed
by many researchers. Notably Jaberi and co–workers [155] and Gutheil and
co–workers [159] have extended the LE approach by incorporating a particle–
based solution for the composition PDF in the gas phase.

7 Extension of the LE approach

As noted in Sec. 4.3.3, preferential concentration and clustering are important
multiphase flow phenomena that need to be accurately captured by simula-
tions. This can be a challenge for LE simulations because accurate prediction
of preferential concentration requires modeling two–particle statistics that are
not represented in the LE approach (cf. Sec. 4.3.3).

However, a two–particle statistical theory can be derived from the point pro-
cess representation detailed in Sec. Two–particle statistics have been used by
other researchers in sprays [75], Brownian dynamics simulation [160] and to
model coagulation. In order to characterize structural properties of the dis-
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Fig. 11. Example of an LE simulation of droplet–laden mixing layer. The gas phase
is solved using point–particle DNS while the droplets evolve as point sources of
mass, momentum and energy corresponding to an LE simulation of type PP–DNS(p)

(cf. Table 1). The droplets are initialized in the lower half plane with a Gaussian
distribution of Stokes number with mass loading 0.2.

persed phase droplets or particles using quantities such as the pair correlation
function, we need to consider the two–particle density ρ(2)(x1,x2,v1,v2, t),
which is defined as

ρ(2)(x1,x2,v1,v2, t) ≡ 〈f ′
1f

′
2〉, (78)

where f ′
1f

′
2 is the two–particle counterpart of the one–point fine–grained den-

sity in the Klimontovich approach [161]:

f ′
1f

′
2 =

N∑

i=1

f
′(i)
1

N∑

j=1
j 6=i

f
′(j)
2 =

N∑

i=1

δ(x1 − X(i)(t))δ(v1 − V(i)(t))×

N∑

j=1
j 6=i

δ(x2 − X(j)(t))δ(v2 − V(j)(t)). (79)

In the above expression [xk,vk, k = 1, 2] are the Eulerian coordinates of the
position–velocity phase space for the particle pair. (The summation over dis-
tinct pairs j 6= i is necessary for the definition of the two–particle density,
whose integral is the second factorial measure. If all pairs are included, an
atomic contribution arises in the second moment measure that does not have a
density [72,71].) The ensemble average of the two–particle fine–grained density
function f ′

1f
′
2 is the two–particle density. Integrating the two–particle density

over the velocity spaces results in the unnormalized pair–correlation function

ρ(2)(x1,x2, t) =
∫

ρ(2)(x1,x2,v1,v2, t) dv1dv2. (80)
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Substituting Eq. 79 into Eq. 78, and differentiating Eq. 78 with respect to time
results in the evolution equation for the two–particle density ρ(2)(x1,x2,v1,v2, t):

∂ρ(2)

∂t
=−

∂

∂x1

(
v1ρ

(2)
)
−

∂

∂x2

(
v2ρ

(2)
)
−

∂

∂v1

(
〈A(1)|x1,x2,v1,v2, t〉ρ

(2)
)

−
∂

∂v2

(
〈A(2)|x1,x2,v1,v2, t〉ρ

(2)
)
. (81)

Introducing the pair relative separation r = x2 − x1 and the pair relative
velocity w = v2 − v1, and assuming statistical homogeneity in physical space
and velocity space, leads to the following form for the evolution of the two–
particle density

∂ρ(2)

∂t
+

∂

∂r

[
wρ(2)

]
+

∂

∂w

[
〈∆A(2)(1)|r,w; t〉ρ(2)

]
= 0, (82)

where

〈∆A(2)(1)|r,w; t〉 = 〈A(2)|x1,x2,v1,v2, t〉 − 〈A(1)|x1,x2,v1,v2, t〉

is the conditionally averaged relative acceleration between particles 1 and 2.
The angle brackets represent averaging over all three–particle (and higher
multiparticle) statistics.

Extending LE simulations to faithfully represent two–particle statistics re-
quires (i) initializing the computational particle ensemble to match both the
ddf and the two–particle density, and (ii) models for the average relative ac-
celeration between particle pairs. Such an approach has been successfully em-
ployed to model nanoparticle aggregation [162].

8 Summary Points

(1) Mathematical Formulation The LE approach is shown to be well
suited for modeling the effects of polydispersity and dispersed–phase in-
ertia in multiphase flows that result in nonlinear, multiscale interactions
and nonequilibrium effects leading to complex flow behavior. The LE
approach is shown to belong to a hierarchy of statistical models for mul-
tiphase flow, and LE closure models imply a set of moment equations
in the Eulerian two–fluid theory. The mathematical formulation of the
LE approach that is based on a stochastic point process theory is gen-
eral enough to extend to dense multiphase flows. It is shown that the
point particle assumption is not necessary in LE formulations, and that

61



the mathematical formulation accounts for finite-sized particles, provided
appropriate closure models are chosen and volume–displacement effects
in the carrier phase are accounted for. It is emphasized that two–particle
effects are not represented in the first–order LE formulation, but are mod-
eled. Two–particle information is primarily needed to compute collisional
effects that are modeled in the LE approach. However, recent PR–DNS
also reveal the importance of neighbor particle effects and fluctuations in
number of particles or droplets (compared to the mean). Representation
of both these phenomena requires two–particle information, so they must
also be modeled in a first–order LE formulation.

(2) Closure Models The LE particle method solution to the NDF can be
interpreted as a computational solution to the evolution of an ensemble
of identically distributed surrogate droplets (or particles). Conceptualiz-
ing surrogate particles as only being statistically equivalent to physical
particles or droplets gives considerable flexibility in modeling. One of the
advantages of the LE particle method solution is that it is easy to ensure
that models are realizable and Galilean–invariant. While models for par-
ticle or droplet velocity can be deterministic or stochastic, recent evidence
from FR–DNS of gas-solid flow suggests that stochastic models for the
particle velocity increment might represent particle acceleration statistics
more faithfully than deterministic models. Implied models for the mean
and fluctuating dispersed–phase velocity should capture mean momen-
tum transfer and transfer of TKE over a range of volume fraction, Stokes
number and Reynolds number. Position evolution and droplet dispersion
models should capture the dependence of dispersion statistics on volume
fraction, Stokes number and Reynolds number. The opposite trends of
particle dispersion and interphase TKE transfer on Stokes number can
be captured using a timescale that incorporates multiscale effects.

(3) Numerical Solution Accurate calculation of the interphase transfer
terms corresponding to mass, momentum, and energy coupling between
the Lagrangian particle representation and the Eulerian gas–phase equa-
tions is crucial for predicting qualitatively correct physical behavior, as
well as for quantitative comparison with experiments or higher fidelity
simulations. An error model for LE simulations is proposed that decom-
poses the total numerical error into discretization, statistical, and bias
error contributions. In TLE simulations where a fixed number of compu-
tational particles Nc is used to represent the dispersed phase on a grid, the
statistical error in a grid–based estimate of any mean field quantity in-
creases with grid refinement, resulting in non–convergent LE simulationa.
Without the use of special numerical algorithms, the statistical error can
overwhelm the calculation of physical quantities such as the mean inter-
phase momentum transfer. A solution to the LE numerical convergence
problem is the use of grid–free kernel–based estimators. With grid–free
estimation methods the Eulerian grid for the carrier phase can be refined
independently of the number of computational parcels that represent the
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dispersed phase in the Lagrangian frame. Since in this approach the Eu-
lerian grid does not need to be tied to particle size it always results in
convergent estimates, whereas with grid-based estimation methods the
computed local dispersed–phase volume fraction appears to not converge
with increasing grid refinement. Another source of numerical error in LE
simulations is spatial nonuniformity in the distribution of computational
particles. A computational particle number density control algorithm that
employs time–evolving statistical weights ensures a near–uniform distri-
bution of computational particles to remedy this problem. Therefore, the
two major limitations of TLE simulations: (i) increase in statistical error
with grid refinement, and (ii) non–uniform spatial distribution of statisti-
cal error, are effectively addressed by kernel–based grid–free estimation,
and computational particle number density control, respectively.

(4) Variants and Extensions Since two–particle statistics are not incor-
porated in the first–order LE formulation, inferring the physics of phe-
nomena such as preferential concentration phenomena from LE simula-
tions is questionable. Extending LE simulations to faithfully represent
two–particle statistics requires (i) initializing the computational particle
ensemble to match both the ddf and the two–particle density, and (ii)
models for the average relative acceleration between particle pairs.

9 Future Directions

(1) Mathematical Formulation One important extension of the current
first–order LE approach is to formally include two–particle effects. Based
on the results in Fig. 6(b) we conclude that it may not be possible to
propose a closure for the conditional acceleration of a particle due to
hydrodynamic forces 〈Ak|x,v ; t〉 that is dependent purely on first–order
statistics. Since the kinetic theory or ddf description does not contain a
description of second–order statistics, this suggests it may be an inade-
quate level of closure for multiphase flows in which fluctuations of number
and volume are significant. The other extension is the formal inclusion
of joint particle (or droplet) and carrier fluid–phase statistics. For parti-
cles and droplets of finite size this also requires extension to two–particle
statistics.

(2) Closure Models It is anticipated that the development of models from
FR–DNS will play a major role in improvement of LE closures. Devel-
opment of models for LES will depend on the filtering approach, with
the recently introduced self–conditioned LES approach appearing to be
the most consistent and promising [1,163]. The development of stochas-
tic collision models along the Enskog Simulation Monte Carlo (ESMC)
approach [164,165] will be useful for LE simulation of dense flows. Fur-
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thermore, there is still scope for development of multiscale models for LE
simulation of multiphase flows.
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A Evolution equation for the volume–weighted ddf of fluctuating

velocity

The evolution equation for the volume–weighted ddf of fluctuating velocity
g̃ is derived in this section. Using the chain rule, we first form the time and
spatial derivatives of the r3–weighted ddf f̃ :

∂f̃

∂t
=

∂g̃

∂t
+

∂g̃

∂wj

∂〈̃Vj〉

∂t
(A.1)

∂f̃

∂xk
=

∂g̃

∂xk
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∂g̃

∂wj

∂〈̃Vj〉

∂xk
(A.2)

The above two expressions can be combined as follows:
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Multiplying Eq.(10) on both sides by r3, the evolution equation for f̃ = r3f
can be derived:

∂f̃

∂t
+ vk

∂f̃

∂xk
= −

∂

∂vk

[
〈Ak|x,v, r; t〉f̃

]
−

∂

∂r

[
〈Θ|x,v, r; t〉f̃

]
+ 3r2〈Θ|x,v, r; t〉.

(A.4)
Note that since vk is a sample space variable, it can be taken outside the deriva-
tive in the second term on the left hand side. Equating the right hand sides of
Eq.(A.3) and Eq.(A.4), and rearranging results in the transport equation for
the r3–weighted ddf of fluctuating velocity Eq.38.
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