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Abstract

Mass diffusion in multicomponent gas mixtures is governed by a coupled system of
linear equations for the diffusive mass ¯uxes in terms of thermodynamic driving
forces, known as the generalized Stefan±Maxwell equation. In computations of mass
diffusion in multicomponent gas mixtures, this coupling between the different
components results in considerable computational overhead. Consequently, simpli®ed
diffusion models for the diffusive mass ¯uxes as explicit functions of the driving
forces are an attractive alternative. These models can be interpreted as an
approximate solution to the Stefan±Maxwell equation. Simpli®ed diffusion models
require the speci®cation of `̀ effective'' diffusion coef®cients which are usually
expressed as functions of the binary diffusion coef®cients of each species pair in the
mixture. Current models for the effective diffusion coef®cients are incapable of
providing a priori control over the error incurred in the approximate solution.

In this paper a general form for diagonal approximations is derived, which accounts
for the requirement imposed by the special structure of the Stefan±Maxwell equation
that such approximations be constructed in a reduced-dimensional subspace. In
addition, it is shown that current models can be expressed as particular cases of two
general forms, but not all these models correspond to the general form for diagonal
approximations. A new minimum error diagonal approximation (MEDA) model is
proposed, based on the criterion that the diagonal approximation minimize the error
in the species velocities. Analytic expressions are derived for the MEDA model's
effective diffusion coef®cients based on this criterion. These effective diffusion
coef®cients automatically give the correct solution in two important limiting cases:
for that of a binary mixture, and for the case of arbitrary number of components with
identical binary diffusivities. Although these minimum error effective diffusion
coef®cients are more expensive to compute than existing ones, the approximation will
still be cheaper than computing the exact Stefan±Maxwell solution, while at the same
time being more accurate than any other diagonal approximation. Furthermore, while
the minimum error effective diffusion coef®cients in this work are derived for bulk
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diffusion in homogeneous media, the minimization procedure can in principle be
used to derive similar coef®cients for diffusion problems in heterogeneous media
which can be represented by similar forms of the Stefan±Maxwell equation. These
problems include diffusion in macro- and microporous catalysts, adsorbents, and
membranes.

1. Introduction

In this paper a rational approach to constructing diagonal approximations to the
Stefan±Maxwell equation which governs mass-diffusion in multicomponent gaseous
mixtures is presented. These approximations, like the Fickian diffusion assumption,
decouple the full linear system by specifying effective binary diffusion coef®cients,
thereby reducing computational expense. The necessary background for mass
diffusion in multicomponent gas mixtures is established in Section 2. In order to
familiarize the reader with some of the previous modeling efforts, three important
simpli®ed diffusion models are described in Section 3. The modeling issues
associated with constructing simpli®ed diffusion models are itemized in Section 4. In
Section 5 the solution of the Stefan±Maxwell equation is detailed, which leads to the
resolution of some of these modeling issues. This section also helps to establish a
clear connection between the general form of existing approximations, which is given
in Section 6, and the Stefan±Maxwell solution. The Stefan±Maxwell solution for two
special limiting cases is explored in Section 7, which reveals the special structure of
this equation. With the aid of this development a critical appraisal of existing models
is given in Section 8. In Section 9 a new approach to constructing simpli®ed diffusion
models is described, and the general form of diagonal approximations is given in
Section 10. The particular form of these diagonal models that minimizes the error
incurred in the approximation is derived in Section 11. Implications of this work are
discussed in Section 12, and the salient conclusions are summarized in the ®nal
section. The minimization procedure developed in this work can also be used to
derive similar effective diffusion coef®cients for diffusion problems in heterogeneous
media which can be cast in the Stefan±Maxwell equation framework.

2. Background

Consider a multicomponent ideal gas mixture with N different chemical species. This
system may be characterized by the mixture mass density �, the mass-averaged
velocity u, the internal energy e, and the species mass fractions Y�; � � 1; . . . ;N,
which together constitute N� 5 unknowns. The mass fraction Y� of species � is
de®ned as

Y� � ��=�; � � 1; . . . ;N; �1�

where �� is the mass density of the � species (note that
P

� �� � �, whenceP
� Y� � 1). These N� 5 unknowns (�, u, e, Y�) are related by N� 5 conservation

equations of mass, momentum, energy and species [1]. In particular, the species
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conservation equation is:

�
@Y�

@t
� �u � rY� � S� ÿr � ��Y���V����; � � 1; . . . ;N; �2�

which states that following the mass-average motion of the ¯uid, the species mass
fraction Y� can change only by chemical reaction S�, or by diffusion. The quantity
�Y���V��� is termed the diffusive mass ¯ux of species �. The summation convention
in this paper is that repeated indices are summed over unless they are bracketed like
in the diffusive mass ¯ux term of equation (2).

If u� denotes the average velocity of molecules of species �, then the mass-averaged
velocity of the mixture u is determined by the relation

u � Y�u�: �3�
The mass diffusion velocity of species �, denoted V�, is de®ned as the difference
between the mean molecular velocity of species � and the mass-averaged velocity of
the mixture,

V� � u� ÿ u: �4�

Note that equations (3) and (4) together imply that the mass diffusion velocity must
satisfy the constraint

Y�V� � 0: �5�
The diffusive mass ¯ux of species � relative to the mass-averaged velocity of the
mixture u, is de®ned as

J� � �����u��� ÿ u� � �Y���V���: �6�
The N species conservation equations (eq. (2)) together with the 5 conservation
equations for �, u, and e, form a closed set in terms of the N� 5 unknowns, provided
quantities such as the reaction rates S� and the diffusion ¯uxes �Y���V��� can be
related to the variables (�, u, e, Y�), and their gradients. In this paper we are
concerned with the closure of the mass diffusion terms. The closure equation for the
mass diffusion ¯uxes in terms of the mass-fraction gradients as given by the complete
kinetic theory [1], is the Stefan±Maxwell equation.

2.1. The generalized Stefan±Maxwell equation

Following Ramshaw [2], the generalized Stefan±Maxwell equation for the mass
diffusion velocities V� is written as a linear system of the form

X
�

X���X���
D��

�V��� ÿ V���� � G�; �7�
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where X� is the mole fraction of species �, D�� is the binary diffusivity for the
species pair (�, �) and the driving forces G� are given by

G� � rX� � �X� ÿ Y��r In p� K�r ln T ÿ 1

p
�����F��� ÿ Y��� F��; �8�

where p is the pressure, T is the temperature, and F� is the body force per unit mass
acting on species �. The coef®cients K� are related to the thermal diffusion
coef®cients DT ;� [1], [2] by the relation

K� �
X
�

X���X���
�D��

DT ;�

Y���
ÿ DT ;�

Y���

� �
: �9�

When the only non-zero contribution to the driving forces G� is due to concentration
gradients rX�, equation (7) is commonly referred to as the Stefan±Maxwell equation
[1]. When the driving forces are generalized to include the contributions due to
pressure gradients, temperature gradients and body forces [2], equation (7) is referred
to as the generalized Stefan±Maxwell equation. The sum of the driving forces G�

over all species is zero:X
�

G� � 0: �10�

Since the species conservation equation (eq. (2)) is in terms of mass fractions, it is
convenient to express the mole-fraction gradients G� (for simplicity, and without loss
of generality, hereinafter it is assumed that the only non-zero contribution to the
driving forces arises from concentration gradients) in equation (8) as a linear
combination of mass fraction gradients H� � rY�:

G� � rX� � @X�

@Y�
rY� � T�� H�; �11�

where the transformation matrix T�� is given by

T������ �
X���
Y���
�1ÿ X���� �12�

T�� �
X�X���

Y���
; � 6� �: �13�

With the relation between G� and H�, it is easy to see that equation (7) represents a
closure of the diffusion ¯ux in terms of mass fraction gradients. The sum of the
driving forces H� over all species is also zero:X

�

H� � 0: �14�
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It is well known that the Stefan±Maxwell equation (eq. (7)) alone does not determine
the mass diffusion velocities V� uniquely [2]. The additional constraint on the mass-
diffusion velocity Y�V� � 0 is needed to uniquely determine V�. Since equation (7)
is only a statement concerning velocity differences, its solution is indeterminate to
within a constant vector.

This indeterminacy implies that equation (7) may also be written in terms of the
species velocity with u� � V� � u in place of V� as

X
�

X���X���
D��

�u��� ÿ u���� � G�: �15�

The additional constraint is now Y�u� � u, where u is determined by the momentum
equation, and may be regarded as known.

Some approximations to the Stefan±Maxwell equation also use the molar diffusion
velocity V0�, which is de®ned as the difference between the mean molecular velocity
of species � and the molar-averaged velocity of the mixture:

V0� � u� ÿ u0; �16�

where the molar-averaged velocity of the mixture u0 is given by the relation

u0 � X�u�: �17�

Note that equations (17) and (16) together imply that the molar diffusion velocity
must satisfy the constraint

X�V0� � 0: �18�

Substituting

u� � V0� � u0

from equation (16) into equation (15) results in the Stefan±Maxwell equation in terms
of the molar diffusion velocity:

X
�

X���X���
D��

�V0��� ÿ V0���� � G�: �19�

The system of equations expressed in equations (7), (15) and (19) can be represented
in a single general matrix form as

M��W� � P�; �20�
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where

M�� �A��; � 6� �;
M������ � ÿ

X



A�
; 
 6� �; �21�

and

A������ �
X���X���

D��
:

In this general matrix representation of the Stefan±Maxwell equation (eq. (20)), W�

can represent either the mass diffusion velocity V�, the species velocity u� , or the
molar diffusion velocity V0�; and P� can represent either the driving forces in terms
of mole-fraction gradients G�, or the driving forces in terms of mass fraction
gradients T��H�. The reason for considering all possible combinations of velocities
and driving forces is that approximations to the Stefan±Maxwell equation are
formulated with different combinations of velocities and driving forces. This general
representation, which subsumes all such combinations, is useful in deriving general
forms for existing approximations. This general matrix form is also used later to show
that, while all combinations are equivalent as far as the full Stefan±Maxwell equation
is concerned, the same is not true when constructing diagonal approximations to the
equation.

3. Existing Simpli®ed Diffusion Models

In order to gain an appreciation for the issues involved in the construction of
simpli®ed diffusion equations which are approximations to the Stefan±Maxwell
equation, some of the past work in this area is brie¯y reviewed. Subsequently in
Section 6 it will be shown that these simpli®ed diffusion equations are special cases
of a general class of approximations.

3.1. Fickian diffusion model

For binary mixtures (N� 2) the exact solution to the Stefan±Maxwell equation
simpli®es to:

V� � ÿ D12

Y���
H�; � � 1; 2; �22�

(note that it is assumed that D12�D21). The above equation is also known as Fick's
Law, and it is exact for binary mixtures, and also for equal diffusivity mixtures with
arbitrary number of species [1]. Its characteristic feature is that the diffusion velocity
of the �th species is purely a function of the �th driving force.

For the general multicomponent case (N> 2, and diffusivities not necessarily equal)
the exact solution to the Stefan±Maxwell equation does not have any such simple
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representation. The Fickian diffusion approximation (FDA)1) generalizes the form in
equation (22) for the general multicomponent case (N>2) to get:

Ve
� � ÿ

De
���

Y���
H�; � � 1; . . . ;N; �23�

where Ve
� represents the FDA model for mass diffusion velocity. There are two

important features associated with the FDA model. First, the FDA model for the
diffusion velocity is easier to compute than solving the full Stefan±Maxwell linear
system. Secondly, it assumes that the coupling between driving forces and diffusion
velocities is purely diagonal, since V� is independent of H�; � 6� �. It is possible to
construct a model that has the ®rst feature, but does not make this assumption, and
such a model will be described in Section 3.3.

The effective diffusion coef®cient De
� is used to model the diffusion velocity of

species � in terms of the driving force associated with species � in a manner
analogous to the binary case. It is taken to be some function of the binary diffusivities
of all the species pairs, and the species mole fractions:

De
� � f �D
�;X�:

For the FDA model these effective diffusion coef®cients are speci®ed as:

De
� �

�1ÿ X����P
� 6�� X���=D������

: �24�

While these effective diffusion coef®cients are qualitatively correct, there is no real
justi®cation for this speci®cation from a quantitative standpoint: i.e., this speci®cation
takes no cognizance of the error it implies between the Fickian model for diffusion
velocity and the true solution to the Stefan±Maxwell equation. It is important to note
that if equation (23) is applied to all the N species, then the modeled mass diffusion
velocities violate the constraint given in equation (5), i.e.

Y�Ve
� 6� 0:

The FDA model can also be written in terms of molar diffusion velocities as

V0e� � ÿ
De
���

X���G�; � � 1; . . . ;N; �25�

where V 0e� is the FDA model for the molar diffusion velocity of species �. Again, if
equation (25) is applied to all the N species, then the modeled molar diffusion

1)In this paper we make a distinction between the terms Fickian diffusion approximation and

effective binary diffusion approximation. See Section 12.3 for details.
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velocities violate the constraint given in equation (18), i.e.

X�V0e� 6� 0:

This de®ciency motivates the next simpli®ed diffusion model.

3.2. Modi®ed Fickian diffusion model

In this model the simpli®ed diffusion equation given in equation (23) (or eq. (25)) is
applied to only N±1 species:

Vem
� � ÿ

De
���

Y���
H�; � � 1; . . . ;N ÿ 1 �26�

V0em
� � ÿ

De
���

X���
G�; � � 1; . . . ;N ÿ 1: �27�

The appropriate constraint on the diffusion velocity (eq. (5) for Vem
� and eq. (18) for

V0em
� ) then determines the N th species' diffusion velocity to be:

Vem
N �

1

YN

XNÿ1

��1

De
���H�; �28�

V0em
N � 1

XN

XNÿ1

��1

De
���G�: �29�

It is important to note that the modi®ed FDA model has an undesirable dependence
on the ordering of the species.

3.3. Self-consistent effective binary diffusion model

The self-consistent effective binary diffusion (SCEBD) model proposed by Ramshaw
[2], and reformulated by Ramshaw and Chang [3], addresses the modi®ed FDA
model's dependence on species order. The SCEBD model for the species velocity is

us c
� � aÿ

Ds c
���

X���
G�; �30�

where a is a constant vector which is the same for all the species, and the effective
diffusion coef®cient Dsc

� is de®ned as

Ds c
� � 1ÿ w�

w

� � X
� 6��

X���
D������

" #ÿ1

: �31�
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In equation (31) the quantity w� is a weighting factor associated with the �th species,
and w �P� w�. Ramshaw and Chang [3] propose different choices for the weighting
factors which include w� � X� and w� � Y�.

The constraint on the species velocity (eq. (3)) is used to determine the constant
vector a, resulting in

a � u�
X
�

Y���
Ds c
���

X���
G�: �32�

This value of a can be substituted back into equation (30) to get the ®nal form of the
SCEBD model:

usc
� � uÿ

Ds c
���

X���
G� �

X
�

Y���
Dsc
���

X���
G�: �33�

The following features of the SCEBD model are noteworthy:

(a) The SCEBD model is formulated in terms of the species velocity, whereas the
modi®ed FDA is formulated in terms of diffusion velocity.

(b) In the SCEBD model the species velocity is modeled in terms of mole-fraction
gradients, but the species velocity constraint which is used to determine the
constant vector a corresponds to the mass-average velocity.

(c) The SCEBD effective diffusion coef®cients are formulated in terms of weighting
factors which, when chosen to be mole fractions, reduce to the effective diffusion
coef®cients in the FDA model.

(d) Unlike the Fickian diffusion models, in the SCEBD model the velocity of the �th
species depends on G�; � 6� �, for all N species. This point is further elucidated
in Section 12.3.

4. Modeling Issues

With a description of the important simpli®ed diffusion models in hand, it is seen that
the following modeling issues are still unresolved.

1. What space should the model be formulated in ? i.e., species velocity u�, mass
diffusion velocity V�, or molar diffusion velocity V0� , in terms of mole-fraction
gradients G
 or mass-fraction gradients H
 ?
Each simpli®ed diffusion model can be viewed as a transformation from the space
of driving forces to the space of velocities. From the description of the FDA,
modi®ed FDA and the SCEBD models in the previous section, it is clear that there
is a lack of consensus as to which space the model should be formulated in.

2. What exactly are the existing models approximations to ?
None of the existing models clearly describe how the matrix equations implied by
their effective diffusion coef®cients relate to the original matrix M.

Minimum error Fickian diffusion coef®cients 9
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3. What is the correct behaviour that a model must reproduce in limiting cases, and
what does this imply for the form of the model?
The exact solution to the Stefan±Maxwell equation is known for the binary (N� 2)
diffusion case, and for the case where all the component pairs have identical
diffusivities. While the FDA and modi®ed FDA models reproduce these limiting
case solutions, the behaviour of the SCEBD model in these limiting cases is
dependent on the speci®cation of the weighting factors. It is shown in Section 5
that the solution to the Stefan±Maxwell equation in these limiting cases reveals the
structure of this linear system, which can then be used to construct simpli®ed
diffusion models.

4. How many model coef®cients (effective diffusion coef®cients) can be indepen-
dently speci®ed in a diagonal approximation ? N, or Nÿ1?
This issue is resolved in Section 9.5.

5. Is there a rational way to construct a model that will minimize the error in the
diagonal approximation?
All the models considered so far make no mention of the error incurred in the
approximations. It is shown in Section 11 that not only can an expression for the
error by derived, but in fact the model coef®cients can be chosen so as to minimize
the 2-norm of the error.

6. Can we construct diagonal approximations that are not dependent on species
order?

The question of species order is addressed in Section 12.4.

5. Naive Solution to the Stefan±Maxwell Equation

In order to gain insight into these modeling issues, it is worthwhile to ®rst investigate
the form of the solution to the Stefan±Maxwell equation (eq. 20) using a naive
approach. The elements of matrix M in equation (20) depend on the binary
diffusivities (which are in turn dependent on the chemical species present in the
mixture), and also on the mole fractions X�, which are functions of space and time in
general. Assuming that all the X� are non-zero2), and under the reasonable
assumption that the diffusivities D�� are ®nite non-zero quantities, M is a singular
matrix whose rank is exactly Nÿ1. While formally this implies there is a one-
parameter family of solutions to the least-squares problem

min
W�

kM��W� ÿP�k2

corresponding to the matrix equation (20), clearly there is an unique member of this
family, which is the solution to the physical problem, that solves equation (20)
exactly3). This family of solutions can be written as [4]

W� � M��
P
 �Wn
�; �34�

2) The case where some of the X� are exactly zero is discussed separately in Section 12.6.
3) How this unique member of the family is selected is explained shortly.
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where M� denotes the pseudo-inverse of M [5], and Wn
� represents the indeterminate

part of W� which lies in the null space of matrix M.

The pseudo-inverse M� is the unique matrix that solves the least-squares problem
with W� � M��
P
 having the smallest 2-norm in the set of all solutions to the least-
squares problem. Details of various properties (including uniqueness) of the pseudo-
inverse may be found in Golub and Van Loan [5] (pp. 256±257) and Lawson and
Hanson [4] (pp. 36±40).

Given a basis for the null space of M, the entire family of solutions can be represented
by different values of a scalar parameter which when multiplied by the basis yields a
different Wn

� in equation (34), corresponding to each member of the set of solutions
to the least-squares problem. Since Wn

� lies in the null space of M, it satis®es the
relation

M��Wn
� � 0: �35�

Furthermore, since the matrix M has special structure, the indeterminate part of the
solution Wn

� has a matrix form. The matrix M is a pair-wise exchange matrix since it
is symmetric and has the property

M������ � ÿ
X



M�
: �36�

This implies that

Wn
� � ce�; �37�

where c is a constant vector which is the same for all species, and e� is a unit vector
in the �-direction of species space.

It is convenient to rewrite the solution given by equation (34) for the two different
cases corresponding to P
 being expressed in terms of mole-fraction gradients or
mass-fraction gradients. When P
 � G
 , equation (34) becomes

W� � M��
G
 �Wn
�; �38�

and when P
 � T
�H� it can be written as

W� � N���H� �Wn
�; �39�

where

N��� � M��
T
�: �40�

Of course the indeterminate parts of the solution in equations (38) and (39) will be
different, but they span the same space.

Minimum error Fickian diffusion coef®cients 11
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The value of the constant vector c in equation (37) is determined by imposing the
appropriate constraint on the velocity, which depends on which velocity is
represented by W�. The constraints corresponding to the different choices can be
written as

W� �
V� : Y�V� � 0

V0� : X�V0� � 0

u� : Y�u� � u
u� : X�u� � u0

8>><>>: �41�

While the appropriate constraint uniquely determines W� from the family of
solutions expressed in equation (34), it is important to note that this W� still only
solves equation (20) in the least-squares sense, i.e. it minimizes the quantity

"2
LS � kM��W� ÿP�k2

2:

For arbitrary P� which may have non-zero components in the null-space of matrix
M��, the quantity "LS will in general be non-zero. This means that for arbitrary P�

the uniquely determined W� does not solve equation (20) exactly. It is only by virtue
of the constraint on the driving forces

P
� P� � 0, that the Stefan±Maxwell

solution, which is the constrained member of the family of solutions expressed by
equation (34), is unique and exact.

As a speci®c example of the solution procedure, we ®rst consider the mole-fraction
gradient case where P
 � G
 , in which case the solution W� is given by equation
(38). If W� is the molar diffusion velocity V0� , the constraint equation can be written
as

X�V0� � X�M��
G
 � X�ce� � 0; �42�
where the expression for V0� from equation (38) has been substituted. Solving for the
constant c yields

c � ÿX�M��
G
; �43�
which results in the following expression for V0�:

V0� � M��
G
 ÿ X�M
�
�
G
e�: �44�

The above equation may be rewritten in a more compact form as

V0� � M�c0
�
 G
; �45�

where M�c0
�
 represents the matrix pseudo-inverse of M after the constraint

corresponding to the molar diffusion velocity has been imposed, and is given by

M�c0
�
 � M��
 ÿ X�M

�
�
: �46�
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If instead of the molar diffusion velocity, W� is taken to be the species velocity u�
and the constraint of equation (17) is imposed, one obtains

X�u� � X�M��
G
 � X�ce� � u0: �47�

The resulting ®nal form for the species velocity is then

u� � M�e0
�
 G
 � u0: �48�

Clearly this solution is exactly equivalent to that expressed in equation (45).

In an entirely analogous fashion one can write the solution for any of the other W�,
i.e. the mass diffusion velocity or the species velocity (with the mass-averaged
velocity constraint) in terms of the mole-fraction gradients. It turns out that regardless
of whether the solution is expressed in terms of the species of velocity or the diffusion
velocities, all the solutions are equivalent to

V0� � M�c0
�
 G
 �49�

or

V� � M�c
�
G
; �50�

where

M�c
�
 � M��
 ÿ Y�M

�
�
: �51�

The same conclusions hold true for the mass-fraction gradient case (P
 � T
�H�),
where the solution W� is given by equation (39). Again, regardless of whether the
solution is expressed in terms of the species velocity or the diffusion velocities, all the
solutions are equivalent to

V0� � N�c0
�
 H
 �52�

or

V� � N�c
�
 H
; �53�

where

N�c0
�
 � N��
 ÿ X�N

�
�
 �54�

N�c
�
 � N��
 ÿ Y�N

�
�
: �55�

Since all the solutions are entirely equivalent to the expressions for the mass and
molar diffusion velocities, there is no reason to model in terms of species velocity (cf.
modeling issue #1). Other advantages of formulating the problem in terms of the
diffusion velocity are detailed in Section 12.2.
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6. General Form of Previous Approximations

Given the form of the solution to the Stefan Maxwell equation (eqs. (49), (50), (52),
and (53)) it is easy to ascertain the exact nature of the approximation implied by
existing models. However, it is advantageous to ®rst cast the existing models in their
most general forms.

The FDA model and its modi®ed version are of the form

Ve=em
� � K

e=em
�� H�: �56�

For the standard FDA model

Ke �
ÿDe

1=Y1 0 0 � � � 0

0 ÿDe
2=Y2 0 � � � 0

� � � � � � � � � � � � � � �
0 0 0 � � � ÿDe

N=YN

2664
3775; �57�

and for the modi®ed version of the FDA model

Kem �

ÿDe
1=Y1 0 0 � � � 0 0

0 ÿDe
2=Y2 0 � � � 0 0

� � � � � � � � � � � � � � � � � �
0 0 0 � � � ÿDe

Nÿ1=YNÿ1 0

De
1=YN De

2=YN De
3=YN � � � De

Nÿ1=YN 0

266664
377775: �58�

Comparing equation (56) with equation (53) shows that both Ke
�
 and Kem

�
 are models
for N�c

�
 (cf. modeling issue #2).

Similarly the SCEBD model can be cast in the form

Vs c
� � Ls c

��G�; �59�

where

Ls c�
�Y1 ÿ 1�Ds c

1 =X1 Y2Ds c
2 =X2 Y3Ds c

3 =X3 � � � YNDs c
N =XN

Y1Ds c
1 =X1 �Y2 ÿ 1�Ds c

2 =X2 Y3Ds c
3 =X3 � � � YNDs c

N =XN

� � � � � � � � � � � � � � �
Y1Ds c

1 =X1 Y2Ds c
2 =X2 Y3Ds c

3 =X3 � � � �YN ÿ 1�Ds c
N =XN

2664
3775:
�60�

Again comparing equation (59) with equation (50) reveals that Ls c
�� is a model for

M�c
�� (cf. modeling issue #2).

An important observation stemming from equation (60) is that the SCEBD model is
not a Fickian type approximation, in that Ls c has non-zero off-diagonal entries for all
species. In particular, one should not be misled by the SCEBD model expression
given by equation (30), which would result in a diagonal approximation only if the
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constant vector a were exactly equal to the mass-averaged velocity: i.e., a� u.
However, expressing the SCEBD model in terms of mass diffusion velocities shows
the contribution of G�; � 6� � to Vs c

� :

Vs c
� � ÿ

Ds c
���

X���
G� �

X
�

Y���
Ds c
���

X���
G�: �61�

The following points concerning a non-diagonal approximation are worth noting. It is
considerably more dif®cult to minimize the error in approximating a matrix (such as
M�c
�� ) by a non-diagonal matrix, than by a diagonal one. Also it is shown in Section

9.5 that it is easier to reproduce the exact Stefan±Maxwell solution for certain
limiting cases with a diagonal approximation. It is remarkable that the SCEBD
model, which is a non-diagonal approximation, does reproduce the correct limiting
case behaviour for one choice of the weighting factor (w� � X�).

7. Special Limiting Cases

Two limiting cases are considered where the exact solution to the Stefan±Maxwell
equation is known. One reason for considering these cases is to understand the
structure of the linear system under these limiting conditions. It is found that
understanding this structure is crucial to constructing models that will eventually
reproduce the exact solution under these limiting conditions.

7.1. Stefan±Maxwell solution for N� 2

For the seemingly trivial case of a binary mixture, it is well known that the Stefan±
Maxwell diffusion velocities are given by equation (22), or equation (25) (with
N� 2). Nevertheless, it is still useful to formally solve the Stefan±Maxwell equation.

First the solution of molar diffusion velocity in terms of mole-fraction gradients as
given by equation (49) is considered. In the binary mixture case the matrix M can be
written as

M � ÿa a

a ÿa

� �
; �62�

where

a � X1X2

D12

:

The pseudo-inverse M� of the matrix M is found to be

M� � ÿ1=�4a� 1=�4a�
1=�4a� ÿ1=�4a�

� �
: �63�
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Substituting this into the expression in equation (46) for the constrained pseudo-
inverse M�c0 yields

M�c0 � 1

4a

ÿ2X2 2X2

2X1 ÿ2X1

� �
: �64�

On applying the constraint G2 � ÿG1 (eq. 10), the solution for the molar diffusion
velocity turns out to be

V0� � ÿ
D12

X���
G�; � � 1; 2: �65�

The following important conclusions emerge:
(i) Although the molar diffusion velocity solution for the two species are decoupled

(i.e., the expression for V0� in equation (65) involves only G�, and not G�,
� 6��), the solution matrix M�c0 is not diagonal ! This implies that if a diagonal
model of the form

V0m� � L������G�;

is proposed which seeks to `̀ approximate''4) M�c0 , then it is clear from the solution to
this extremely simple case that �V0�;G�� is not the correct space in which diagonal
models should be constructed.
(ii) The decoupled form emerges only after the constraint on G� is imposed. All the

models which were considered in Section 3 have only imposed the constraint on
velocity, but the constraint on G� has not been explicitly incorporated into the
models. Since this constraint is what renders the velocity solution to the Stefan±
Maxwell equation exact, it should be re¯ected in any simpli®ed diffusion model.
Further implications of neglecting the constraint on the driving forces are
discussed in Section 9.

7.2. Equal diffusivity case

If D�� � D 8�; � � 1; . . . ;N, then the molar diffusion velocity solution can be
written as

V0� � ÿ
D

X���
G�; �66�

which satis®es

M��V0� � G�:

In terms of the mass-diffusion velocity, the solution

V� � ÿ D

Y���
H�; �67�

4) in the sense of some appropriate matrix norm
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satis®es

M��V� � H�:

However, the mass-diffusion velocity solution V� to the equation

M��V� � G�;

is not of this diagonal, decoupled form. Note that H� � Tÿ1
�� G�, where the inverse

transformation Tÿ1 is given by

Tÿ1
������ �

Y���
X���
�1ÿ Y���� �68�

Tÿ1
�� � ÿ

Y�Y���
X���

; � 6� �: �69�

(The quantity Tÿ1
�� refers to the (�,�) element of the matrix Tÿ1, and not the

reciprocal of T��). Substituting Tÿ1
�� G� for H� in equation (67), and using the inverse

transformation relations given in equations (68±69), results in

V� � ÿD
�1ÿ Y����

X���
G� �

X
� 6��

D
Y���
X���

G�: �70�

In matrix form this mass-diffusion velocity solution is

V1

V2

�
VN

0BB@
1CCA� ÿD

�1ÿ Y1�=X1 ÿY2=X2 ÿY3=X3 � � � ÿYN=XN

ÿY1=X1 �1ÿ Y2�=X2 ÿY3=X3 � � � ÿYN=XN

� � � � � � � � � � � � � � �
ÿY1=X1 ÿY2=X2 ÿY3=X3 � � � �1ÿ YN�=XN

2664
3775

G1

G2

�
GN

0BB@
1CCA:
�71�

Thus it is clear that the mass-diffusion velocities do not decouple if V� is expressed in
terms of the mole-fraction gradients G�. This implies that if the model is to be a
Fickian (i.e., diagonal) approximation, and is to reduce to the exact solution in this
limiting case, the modeling should be in the pairs �V0�;G�� or �V�;H��, and not in
�V�;G�� (cf. modeling issue #3). If the model is proposed in �V�;G��, then it cannot
be diagonal and also satisfy the equal diffusivity limiting case solution.

The SCEBD model is an example of a non-diagonal model that does satisfy the equal
diffusivity limiting case solution for a particular choice of the weighting factor
(w� � X�). However, Ramshaw and Chang do not recommend X� as the preferred
choice for the weighting factor since it does not give the highest accuracy in terms of
the normalized Stefan±Maxwell residuals [3]. Since it is easier to construct a
diagonal approximation which provides error control and satis®es the limiting case
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solutions by working in the pairs �V0�;G�� or �V�;H��, the velocity-driving force
combination of �V�;G�� is not chosen for the new model proposed in this paper.

8. Comparison of Previous Models

Based on the foregoing development, a comparative assessment of the models
described in Section 3 is presented in this section. The common de®ciency of all these
models is that their choice of the effective diffusion coef®cients is not governed by an
a priori characterization of the approximation error.

8.1. Fickian diffusion model

This is a diagonal approximation that correctly reproduces both limiting case
solutions but does not satisfy the velocity constraint Y�V� � 0. Clearly this
de®ciency alone renders it an unsatisfactory model.

8.2. Modi®ed FDA model

This model correctly reproduces both limiting case solutions, and satis®es the
velocity constraint, but is dependent on species order. It is also no longer a fully
diagonal approximation. The dependence on species order is certainly undesirable,
but without a thorough investigation into the nature of this dependence it is premature
to dismiss this model as unsatisfactory.

8.3. SCEBD model

The SCEBD model satis®es the velocity constraint without dependence on species
order. It was shown in Section 6 that it is a non-diagonal approximation. The SCEBD
model's limiting case behaviour depends on a model parameter, which is the
weighting factor in equation (31).

For what the authors call the `̀ conventional'' choice of the weighting factor
�w�=w � X�� [3], the SCEBD model reproduces the correct limiting case solution for
both the binary case, and the equal diffusivity case. For the choice of weighting
factors equal to the mass fractions �w�=w � Y��, the SCEBD model does not give the
correct limiting case solution for either the binary or equal diffusivity cases. For the
recommended choice of the weighting factor (equal to the normalized geometric
mean of the mole and mass-fraction choices), the SCEBD model gives the correct
limiting case solution for the binary case, but not for the equal diffusivity case. In this
work it is shown that the correct limiting case behavior does not have to be sacri®ced
in order to resolve issues of error control and species order dependence. Another
feature of the current work, which is lacking in the other modeling efforts discussed,
is a thorough exploration of the exact nature of the issue of dependence on species
order.

Ramshaw and Chang [3] claim that the effect of adding the constant vector a removes
the indeterminacy corresponding precisely to that of the original Stefan±Maxwell
equation itself. This correspondence is not entirely clear for the following reason.
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The Stefan±Maxwell equation (eq. 7) is a singular system of N equations in N
unknowns. Assuming all the mole fractions X� are non-zero, and the diffusivities D��

are ®nite, non-zero quantities, only N ÿ 1 equations in the Stefan±Maxwell system
are linearly independent. Using the additional constraint equations (eqs. (5) and (10))
results in a closed, fully determined system of N ÿ1 equations for N ÿ1 unknowns
without the need for any additional indeterminate constants. Further details are
provided in Section 9.

9. New Approach to Constructing Approximations

The following features are common to the modeling approach taken by all the
existing models described in Section 3:

(i) The models are approximations to either the matrix N�c
�
 , or M�c

��.
(ii) A general form for the velocity (species, mass-diffusion, or molar-diffusion) in

terms of the driving force is speci®ed, and then the appropriate constraint on the
velocity is imposed.

(iii) The fact that the driving forces are constrained is not represented in the models.

Ignoring the constraint on the driving forces implies that the Stefan±Maxwell
equation (eq. 7) in conjunction with the velocity constraint (eq. 5) is an over-
determined system, which is clearly not the case. In Section 5 it was shown that the
solution to equation (20) as expressed in equations (49), (50), (52), and (53) are all
exact only because the constraint on the driving forces ensures that the component of
driving forces in the null space of matrix M is exactly zero.

The new modeling approach pursued in this paper is based on the observation that the
constraints on the velocity and driving force vector (in species space) restrict them to
span lower-dimensional subspaces. If the linear system expressed by the Stefan±
Maxwell equation is transformed to this lower-dimensional subspace, then the
solutions automatically satisfy the constraints. It is also shown that when the matrix
form of the Stefan±Maxwell equation (eq. 20) is transformed to the appropriate
subspace, the matrices associated with the limiting cases trivially become diagonal!
In view of this important observation, the new modeling approach requires that
diagonal approximations be constructed in this subspace. An explicit characterization
of the error incurred by such diagonal approximations with respect to the exact
solution to the Stefan±Maxwell equation constitutes the next step in the new
modeling approach. Finally, the effective diffusion coef®cients are determined by
simply minimizing the approximation error.

In this section the special properties of the Stefan±Maxwell equation which derive
from the constraints on the velocity and driving force are explained. Subsequent
sections deal with the rest of the steps in the new modeling approach.

9.1. Special properties of the Stefan±Maxwell equation

Since the mass-diffusion problem as characterized by the Stefan±Maxwell equation is
isotropic in physical space, a single spatial dimension is considered for simplicity of
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notation. Let the molar-diffusion velocity, mole fractions and the mole-fraction
gradient in this one-dimensional physical system be represented by the following N-
dimensional vectors in species space:

V0 � V 0�; �72�

X � X�; �73�
G � G�; � � 1; . . . ;N: �74�

In species space, the molar-diffusion velocity vector is related to the mole-fraction
gradient vector by the following matrix form of the Stefan±Maxwell equation:

MV0 � G; �75�

where the elements of the matrix M are given by equation (21). The above equation
can be viewed as a linear transformation of the N-dimensional vector of mole-fraction
gradients to the N-dimensional vector of molar-diffusion velocities in species space.
As noted earlier in Section 5, M is a singular matrix. In addition, it is now shown that
equation (75) represents a constrained, singular system.

The constraints on the molar-diffusion velocity and mole-fraction gradients, given by
equations (18) and (10) respectively, can be written in vector notation as:

XTV0 � 0 �76�X
�

G� � 0; �77�

where XT is the transpose of the column vector X. These constraints imply that the
vectors V

0
and G span the subspaces SV and SG respectively, whose dimension is only

(Nÿ1). The subspace SV is de®ned such that its orthogonal complement S?V � span fXg,
and SG is de®ned such that its orthogonal complement S?G � span f�1; 1; . . . ; 1�Tg [5].
One important implication of the constraints on the linear system in equation (75) is
that this is really an (Nÿ1)� (Nÿ1) problem.

Now the transformation of the original matrix equation expressed in equation (75) to
the lower-dimensional subspace is described. Consider the transformations

V0 � RV0r �78�
G � PGr; �79�

where V0r and Gr are Nÿ1 vectors which are referred to as the reduced
representations of V0 and G in the subspaces SV and SG. From equations (78) and
(79) it is clear that R and P are non-square, N� (Nÿ1) matrices. Substituting the
reduced representations given by equations (78) and (79) in the original matrix
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equation (eq. 75), results in the transformed matrix equation:

MRV0r � PGr; �80�

which can be written as

AV0r � Gr; �81�

where the matrix A is de®ned as

A � PÿMR: �82�

In equation (82), the (Nÿ1)�N matrix Pÿ satis®es the following relation5):

PÿP � I�Nÿ1���Nÿ1�; �83�

where I�Nÿ1���Nÿ1� represents the (Nÿ1)� (Nÿ1) identity matrix. Since the
transformed linear system in equation (81) incorporates the constraints on both the
velocity and the driving forces, it is claimed that this is the correct space in which
approximations to the Stefan±Maxwell equation by simpli®ed diffusion models
should be constructed. Clearly such models will be automatically consistent. In the
next subsection the transformation matrices R and P are speci®ed.

9.2. The transformation matrices

One form for the matrix R leads to the equation:

V0 � RN��Nÿ1�V0r

�

1 0 � � � � � � 0

0 1 � � � � � � 0

� � � � � � � � � � � � � � �
0 0 � � � 0 1

ÿX1=XN ÿX2=XN � � � ÿXNÿ2=XN ÿXNÿ1=XN

26666664

37777775V
0r:

�84�

Note that the mole fraction vector X is orthogonal to each column of the
transformation matrix R, so that their inner product is always zero. This means that
the molar-diffusion velocity vector V0 expressed in the above form will automatically
satisfy its constraint.

5) It should be noted that Pÿ is not one of the two pseudo-inverses that can be defined for a

non-square matrix P [4], namely P��1� � �PTP��PT or P��2� � PT�PPT��. However, like

P��2� it satisfies equation (83).
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One form for the matrix P can be expressed in the following relation:

G � PN��Nÿ1�Gr �

1 0 � � � 0 0

0 1 � � � 0 0

� � � � � � � � � � � � � � �
0 0 � � � 0 1

ÿ1 ÿ1 ÿ1 � � � ÿ1

266664
377775Gr: �85�

The mole-fraction gradient vector written in this way also automatically satis®es its
constraint.

It should be noted that the transformation matrices are non-unique. The implications
of this non-uniqueness will be discussed in Section 12.4. With these expressions for
the transformation matrices, the matrix A in the transformed linear system can now
be formed.

9.3. The matrix A

The form for the matrix Pÿ which corresponds to the speci®c expression for P given
in equation (85) is

Pÿ�Nÿ1��N �
1 0 0 � � � 0 0

0 1 0 � � � 0 0

� � � � � � � � � � � � � � � � � �
0 0 0 � � � 1 0

2664
3775: �86�

Now the matrix A whose dimension is (Nÿ1)� (Nÿ1) can be constructed for
arbitrary N by using the relation

A�Nÿ1���Nÿ1� � PÿMR: �87�

It is interesting to investigate the structure of the A matrix in the limiting cases of a
binary mixture, and a multicomponent mixture with equal diffusivities.

9.4. Limiting cases: solution for N� 2

For the binary mixture case, the matrix A has only one element, which is given by
equation (87) to be:

A1�1 � �1 0� ÿa a

a ÿa

� �
1

ÿX1=X2

� �
� ÿ a

X2

� ÿ X1

D12

; �88�

where the value of a � �X1X2�=D12 has been substituted.

The solution for the molar-diffusion velocity is then trivially

V0r1 � ÿ
D12

X1

Gr
1: �89�
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In terms of V, the solution is

V 01 � ÿ
D12

X1

G1; �90�

V 02 � ÿ
D12

X2

G2: �91�

The solution in the transformed space for this simple case resolves the issue of why
the solution matrix in the original space M�c0 is not diagonal, although the molar-
diffusion velocity solution for each species is decoupled. The diagonal form emerges
only when the Stefan±Maxwell equation is transformed to the appropriate subspace.

9.5. Limiting cases: equal diffusivity case

For the equal diffusivity case with N species, the matrix A as given by equation (87)
is an (Nÿ1)� (Nÿ1) diagonal matrix which can be written as:

A � diag ÿX1

D
;ÿX2

D
; . . . ;ÿXNÿ1

D

� �
: �92�

Note that only Nÿ1 diagonal values are needed to completely specify the solution to
the equal-diffusivity N-component problem (cf. modeling issue #4). The number of
degrees of freedom in a diagonal model is further discussed in Section 12.2.

The modeling implication of the form of the matrix A in this equal diffusivity
limiting case is that diagonal approximations to A would satisfy the constraints
automatically and could be expected to reduce to the correct expressions in the
limiting cases (cf. modeling issue #3).

9.6. Mass-diffusion velocity formulation

Frequently the formulation of multicomponent diffusion is in terms of mass-diffusion
velocities and mass-fraction gradients. The development of the new modeling
approach for this formulation is very similar to that for the molar-diffusion velocity.
The salient features of this formulation are presented in this subsection.

Let the mass-diffusion velocity, mass fractions and the mass-fraction gradient in a
one-dimensional physical system be represented by the following N-dimensional
vectors in species space:

V � V�; �93�
Y � Y�; �94�
H � H�; � � 1; . . . ;N: �95�
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In species space, the mass-diffusion velocity vector is related to the mass-fraction
gradient vector by the following matrix form of the Stefan±Maxwell equation:

MV � TH: �96�
The constraints on the mass-diffusion velocity and mass-fraction gradients, given by
equations (5) and (14) respectively, can be written in vector notation as:

YTV � 0 �97�X
�

H� � 0; �98�

where YT is the transpose of the column vector Y. These constraints imply that the
vectors V and H span lower-dimensional subspaces, whose dimension is only
(Nÿ1). Now the transformation of the original matrix equation expressed in equation
(96) to the lower-dimensional subspace is described. Consider the transformations

V � ~RVr �99�

H � ~PHr; �100�
where Vr and Hr are Nÿ1 vectors which are referred to as the reduced
representations of V and H in their respective lower-dimensional subspaces.
Substituting the reduced representations given by equations (99) and (100) in the
original matrix equation (eq. 96), results in the transformed matrix equation:

M~RVr � T~PHr; �101�
which can be written as

~AVr �Hr; �102�
where the matrix ~A is de®ned as

~A � ~PÿTÿ1M~R: �103�
In equation (103), the (Nÿ1)�N matrix ~Pÿ satis®es the following relation:

~Pÿ~P � I�Nÿ1���Nÿ1�: �104�
One form for the matrix ~R can be expressed in the form:

V � ~RN��Nÿ1�Vr �

1 0 � � � 0 0

0 1 � � � 0 0

� � � � � � � � � � � � � � �
0 0 � � � 0 1

ÿY1=YN ÿY2=YN ÿY3=YN � � � ÿYNÿ1=YN

266664
377775Vr:

�105�
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One form for the matrix ~P can be expressed in the following relation:

H � ~PN��Nÿ1�Hr �

1 0 � � � 0 0

0 1 � � � 0 0

� � � � � � � � � � � � � � �
0 0 � � � 0 1

ÿ1 ÿ1 ÿ1 � � � ÿ1

266664
377775Hr: �106�

The form for the matrix ~Pÿ which corresponds to the speci®c expression for ~P given
by equation (106) is

~Pÿ�Nÿ1��N �
1 0 0 � � � 0 0

0 1 0 � � � 0 0

� � � � � � � � � � � � � � �
0 0 0 � � � 1 0

2664
3775: �107�

Now the matrix ~A can be constructed for arbitrary N by using the relation

~A�Nÿ1���Nÿ1� � ~PÿTÿ1M~R: �108�

10. General Form for Diagonal Approximations

The next step in the new modeling approach is to propose a general diagonal model in
the transformed space. The general form for diagonal approximations in the
transformed space is:

V0r a � LrGr; �109�

where V0r a is a model for the molar-diffusion velocity in the transformed space
which is expressed as the product of a diagonal matrix Lr � diag�lr

1; l
r
2; . . . ; lrNÿ1� and

the transformed mole-fraction gradients Gr. Comparing this equation to the
transformed Stefan±Maxwell equation (eq. 81) shows that Lr is an approximation
to Aÿ1.

Similar approximations can be constructed for the mass-diffusion velocity Vr in
terms of mass-fraction gradients Hr. The corresponding general form for diagonal
approximations in the transformed space is:

Vr a � KrHr; �110�

where Vr a is a model for the mass-diffusion velocity in the transformed space
which is expressed as the product of a diagonal matrix Kr � diag�kr

1; k
r
2; . . . ; kr

Nÿ1�
and the transformed mass-fraction gradients Hr. Comparing this equation to the
transformed Stefan±Maxwell equation (eq. 102) shows that Kr is an approximation
to ~Aÿ1.
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10.1. Form of diagonal approximation models in original space

It is interesting to see what matrix structure is implied in the original space, by
diagonal approximations in the transformed space. Substituting equation (109) for
V0r a, the diagonal approximation to molar-diffusion velocity in the transformed
space, in equation (80) yields the form of the approximation in the original space to
be

V0a � LG; �111�

where the matrix L denotes Lr transformed back to the original space using the
relation

L � RLrPÿ:

Substituting the expressions for the speci®c forms of these matrices results in

L �

lr
1 0 0 � � � 0 0

0 lr2 0 � � � 0 0

� � � � � � � � � � � � � � � � � �
0 0 0 � � � lrNÿ1 0

ÿlr
1X1=XN ÿlR

2 X2=XN ÿlr
3X3=XN � � � ÿlrNÿ1XNÿ1=XN 0

266664
377775 �112�

A similar expression can be derived for K, the matrix corresponding to Kr in the
original space. Using the relation

K � ~RKr ~Pÿ;

results in

K �

kr
1 0 0 � � � 0 0

0 kr
2 0 � � � 0 0

� � � � � � � � � � � � � � � � � �
0 0 0 � � � kr

Nÿ1 0

ÿkr
1Y1=YN ÿkr

2Y2=YN ÿkr
3Y3=YN � � � ÿkr

Nÿ1YNÿ1=YN 0

266664
377775 �113�

The similarity of the form of the modi®ed FDA model in equation (58) to the form of
the matrix K in equation (113) is striking. This provides a justi®cation and new
interpretation for the form of the modi®ed FDA model: namely, that it corresponds to
a diagonal approximation in the reduced-dimensional subspace. However, the exact
values of the effective diffusion coef®cients in the modi®ed FDA model are still not
justi®ed on any quantitative basis.

11. The Minimum Error Diagonal Approximation (MEDA) Model

Using the form of the diagonal approximation in the reduced-dimensional subspace, a
new simpli®ed diffusion model is proposed in this section. The effective diffusion
coef®cients are determined by the requirement that they minimize the 2-norm of the
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error between the modeled diffusion velocity vector in species space with respect to
the exact Stefan±Maxwell solution.

Let V0r e denote the molar-diffusion velocity vector which is the exact solution to the
Stefan±Maxwell equation in the reduced-dimensional space (eq. 81):

AV0r � Gr:

Let V0r a be the modeled molar-diffusion velocity corresponding to a diagonal model
as in equation (109). The error in the molar-diffusion velocity is given by the vector:

�V0r �V0r a ÿV0r e:

Using equations (81) and (109), it can be shown that the 2-norm of the error can be
written as

k�V0rk2
2 �

XNÿ1

��1

Z����2
���Z���; �114�

where ��1; �2; . . . ; �Nÿ1� are the singular values of the matrix

C � �LrAÿ I�Nÿ1���Nÿ1��;

and

Z � QTV0r e;

where QT is the right orthogonal matrix in the singular value decomposition

C � URQT

of the matrix C. See the appendix for details. The squares of the singular values
R � diagf�1; �2; . . . ; �Nÿ1g represent the component-wise multiplication factors
which when multiplied by the square of the transformed velocity component Z���
sum to the 2-norm of the error in molar-diffusion velocity.

Clearly minimizing the quantity

XNÿ1

��1

�2
���

will minimize the 2-norm of the error in the molar-diffusion velocity. This quantity is
simply the square of the Frobenius norm of the matrix LrAÿ I�Nÿ1���Nÿ1� [5]:

kLrAÿ I�Nÿ1���Nÿ1�k2
F �

XNÿ1

��1

�2
���: �115�
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From equation (114) it follows that in order to minimize the 2-norm of the error, the
diagonal components of the matrix Lr � diag�lr

1; l
r
2; . . . ; lrNÿ1� should be chosen such

that they minimize the quantity

Q � kLrAÿ I�Nÿ1���Nÿ1�k2
F: �116�

This resolves modeling issue #5.

Using the de®nition of the Frobenius norm in terms of the squares of the matrix
elements [5], the quantity Q may be written as

Q �
XNÿ1

��1

XNÿ1

��1

jlr
�������
A
��� ÿ �������j2: �117�

The minimization procedure requires that

@Q

@lr
�

� 0; � � 1; . . . ;N ÿ 1: �118�

Differentiating equation (117) results in

@Q

@lr�
�
XNÿ1

��1

2flr
���A������ ÿ �������gA������

�
XNÿ1

��1

2flr
���A������A������ ÿ A������g:

�119�

Setting @Q=@lr
� � 0 in equation (119) yields the desired values of lr

� to be

lr� �
A������PNÿ1

��1 fA������g2
: �120�

Using the de®nition of A from equation (82) we may write

A
� � Pÿ
�M��R��; 
; � � 1; . . . ;N ÿ 1; �; � � 1; . . . ;N: �121�

Noting that R�� may be written as

R�� � ���; �; � � 1; . . . ;N ÿ 1;

RN� � ÿX�=XN ; � � 1; . . . ;N ÿ 1;

and that Pÿ
� may be written as

Pÿ
� � �
�; �; 
 � 1; . . . ;N ÿ 1

Pÿ
N � 0; 
 � 1; . . . ;N ÿ 1;
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the elements of matrix A may be written as

A
� � �
� M����� ÿM�N

X�

XN

� �� �
; �; �; 
 � 1; . . . ;N ÿ 1

� M
� ÿM
N

X�

XN

� �
: �; 
 � 1; . . . ;N ÿ 1:

�122�

Substituting this expression for A
� into equation (120) results in the desired analytic
expression for the diagonal elements lr� in terms of the elements of the matrix M and
mole fractions:

lr� �
M������ ÿM���N�X���=XN�PNÿ1

��1 fM������ ÿM���N�X���=XN�g2
; � � 1; . . . ;N ÿ 1: �123�

In conjunction with the de®nition of the elements of the matrix M in equation (21),
and in view of the relation between L and Lr given in equation (112), it is clear that
equation (123) represents the speci®cation of the effective diffusion coef®cients of
equation (111) in terms of the binary diffusivities and mole fractions.

11.1. Limiting case behavior of the MEDA model

For the binary case, it was noted that the matrix A has only one element which is
given by equation (88). The MEDA matrix Lr also has only one element which is
given by equation (120) to be

lr1 � 1=A11 � ÿD12

X1

;

which in turn implies that the molar-diffusion velocity in the reduced-dimensional
space is given by

V0r1 � ÿ
D12

X1

Gr
1:

Comparing this with equation (89) reveals that the MEDA model does yield the
correct solution for the binary case.

For the equal diffusivity case it was shown in Section 9.5 that the matrix A is a
diagonal matrix whose elements are given by equation (92). The elements of the
diagonal MEDA matrix Lr as given by equation (120) are simply the reciprocals of
the corresponding diagonal elements of matrix A. Substituting these effective
diffusion coef®cients back into equations (109) and (112) reveals that the MEDA
model yields the correct solution in the equal diffusivity case also.

It is remarkable that the general minimization procedure when formulated in the
correct subspace automatically recovers these limiting case solutions without any
extraneous constraints or information.
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11.2. MEDA coef®cients for mass-diffusion velocity

The procedure for deriving the MEDA model coef®cients for mass-diffusion velocity,
Kr � diag�kr

1; k
r
2; . . . ; kr

Nÿ1�, is identical to that for the molar-diffusion velocity. In
this case the quantity to be minimized is

kKr ~Aÿ I�Nÿ1���Nÿ1�k2
F:

The ®nal form of the model coef®cients is

kr
� �

fB������ ÿ B���N�Y���=YN�gPNÿ1
��1 fB������ ÿ B���N�Y���=YN�g2

; � � 1; . . . ;N ÿ 1; �124�

where

B�� � Tÿ1
�
 M
�; �; �; 
 � 1; . . . ;N:

12. Discussion

This section delves into details concerning various aspects of the study which would
have otherwise been a digression to the main development. The scope of the analysis
in this work, and possible extensions to other mass-diffusion problems is taken up
®rst.

12.1. Scope of the analysis

This work addresses the issue of mass-diffusion in a homogeneous gaseous medium
(also termed bulk diffusion in the literature) consisting of a multicomponent ideal gas
mixture, as described by the Stefan±Maxwell equations (15). As such this description
is valid for gaseous mixtures at low to moderate pressures, and also for
thermodynamically ideal liquid mixtures. Extensions to non-ideal ¯uid mixtures
and to heterogenous media6) are of interest in various applications. Krishna and
Wesselingh [6] provide a comprehensive review of various mass transfer problems
which can be formulated using the Stefan±Maxwell approach. Some problems and
issues relevant to the preceding analysis are brie¯y discussed here.

When the mixture is composed of non-ideal ¯uids, there are two changes to equation
(15) that need to be accounted for. The ®rst is that the generalized driving forces need
to be written in terms of gradients of the chemical potential, rather than the gradients
of mole-fraction. The second is that the effect of thermodynamic non-idealities on the
binary diffusion coef®cients need to be accounted for by a matrix of thermodynamic
factors involving the activity coef®cient for each species. The re-de®ned binary
diffusion coef®cients do not change the structure of the Stefan±Maxwell equation

6) The author is grateful to the anonymous referee whose comments prompted the inclusion of

this subsection.
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system and the analysis for ideal gas mixtures carries over to the non-ideal ¯uid
mixture case as well. However, the re-de®ned binary diffusion coef®cients for highly
non-ideal liquid mixtures exhibit a strong composition dependence, and can exhibit
large variations near phase transition and critical points. For such problems, solving
the full Stefan±Maxwell equation system is probably a better alternative.

The dusty gas model for diffusion in porous media (which is composed of bulk
diffusion and Knudsen diffusion) results in a system of equations similar to the bulk-
diffusion Stefan±Maxwell equations (15), but with appropriately modi®ed diffusion
coef®cients (Krishna and Wesselingh [6]). It is important to note that the presence
of Knudsen diffusion changes the special properties of the matrix M�� associated
with the Stefan±Maxwell equation system for bulk diffusion. In particular, the
presence of Knudsen diffusion results in a nonsingular M�� matrix. However, the
minimization procedure outlined in this work is still applicable, and may be used to
determine the corresponding minimum error Fickian diffusion coef®cients.
Furthermore, the component of the mass ¯ux arising from viscous ¯ow (due to the
pressure gradient driving force) can also be represented by the generalized Stefan±
Maxwell equations. Therefore, the procedure used in this work to derive minimum-
error effective diffusion coef®cients can be extended to diffusion in various
heterogeneous media, such as macro- and microporous catalysts, adsorbents and
membranes.

This discussion would be incomplete without an important caveat concerning the
Fickian diffusion approximation. The Fickian diffusion approximation is incapable of
describing certain diffusion phenomena such as osmotic diffusion, reverse diffusion,
and diffusion barriers, which could be important in certain applications. As a result,
even though the minimum error effective diffusion coef®cients derived in this work
are more accurate than the standard Fickian diffusion coef®cients, since these new
coef®cients are also based on the Fickian approximation, they cannot reproduce these
phenomena either.

12.2. Choice of velocity in the Stefan±Maxwell equation

In Section 1 it was shown that the Stefan±Maxwell equation can be written in terms
of diffusion velocities (mass or molar) or species velocities. While at ®rst sight the
choice of which formulation to use might seem to be more a matter of personal
preference, using the diffusion velocity formulation has certain advantages.

One of the advantages of using the mass-diffusion velocity formulation is that in this
case the Stefan±Maxwell equation (eq. 7) together with the constraint equation (eq. 5)
constitutes an independent, closed system of equations for the mass-diffusion
velocity. The independence feature derives from the fact that this system provides the
necessary closure for the diffusive mass ¯ux in the species conservation equation,
without any additional external information.

The disadvantage of using the species velocity form the Stefan±Maxwell equation
(eq. 15) is that the corresponding constraint equation requires knowledge of the mass-
averaged mixture velocity u. This information is extraneous to the problem since the
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quantity of interest, namely the diffusive mass ¯ux whose closure is sought, is
independent of u.

The other advantage of using the diffusion velocity formulation is that it clearly
reveals the dimensionality and degrees of freedom of the problem. It shows that while
the Stefan±Maxwell equation is singular, by applying the constraints on the velocities
and driving forces the original N�N linear system is transformed to a nonsingular
�N ÿ 1� � �N ÿ 1� system (under the conditions noted in Section 5). This in turn
implies that any diagonal approximation has only Nÿ1 degrees of freedom, or model
coef®cients.

12.3. Fickian diffusion approximation and effective binary diffusion approximation

In this paper we make a distinction between the terms Fickian diffusion
approximation (FDA) and effective binary diffusion approximation. By FDA it is
meant that the diffusion velocity of the �th species depends only on the �th species'
driving force, and not on the driving force associated with any of the other species. As
noted previously, the FDA cannot be true for all species since the diffusion velocities
and driving forces are constrained to span lower-dimensional spaces, and are
therefore coupled. Hence, a decoupling of diffusion velocity-driving force pairs is not
possible for all species. However, in the reduced-dimensional representation of the
Stefan±Maxwell equation all the diffusion velocities are independent and a full
decoupling based on the FDA is possible.

The effective binary diffusion approximation (EBDA) on the other hand models a
multicomponent mixture as a binary mixture of species � and a complementary
composite species representing all the other species. The species velocity solution u�
to the Stefan±Maxwell equation can be decomposed into two contributions: one
arising from the �th driving force and the other arising from the driving forces of the
remaining species. In the SCEBD model which is based on the EBDA, the
contribution to the species velocity from the driving forces associated with the
remaining species is assumed to be the same for all species. However, as is readily
seen from the non-diagonal form of the SCEBD model, driving forces G�; � 6� � do
affect V�. Hence, the SCEBD model is a non-Fickian model.

12.4. Non-uniqueness of the transformations and dependence on species order

It has already been noted in Section 9 that the transformation matrices R and P that
de®ne the reduced representations of the velocity and driving forces are non-unique.
The source of the non-uniqueness is closely related to the modi®ed FDA model's
dependence on species order, and this connection is clari®ed in this section.

In order to de®ne the reduced representation of the molar-diffusion velocity vector in
the subspace SV , we need to de®ne a basis for SV . The subspace SV is de®ned such
that its orthogonal complement S?V � span fXg. The de®nition of the orthogonal
complement S?V is

S?V � fx 2 RN : xTy � 0; 8y 2 SVg:
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This implies that every vector y in SV , must satisfy the relation

XTy � 0:

It was also noted in Section 9.2 that the mole-fraction vector X is orthogonal to each
column of the transformation matrix R, so that their inner product is always zero. So
each column vector of R belongs to SV . Without proof we claim that these column
vectors are linearly independent, and that they span the subspace SV , i.e. that the
column vectors of R form a basis for the subspace SV .

Clearly there is no unique basis for SV . This can be shown easily by noting that the
following alternative de®nition of R also has column vectors that form a basis for SV :

ÿX2=X1 ÿX3=X1 � � � ÿXNÿ1=X1 ÿXN=X1

1 0 � � � � � � 0

0 1 � � � � � � 0

� � � � � � � � � � � � � � �
0 0 � � � 0 1

266664
377775 �125�

However, only N of all possible bases for SV (in conjunction with the appropriately
de®ned basis for SG) result in diagonal A for the equal diffusivity case. If diagonal
approximations to A are to reproduce the correct solution for the equal diffusivity
case, then such approximations must be constructed using one of these N bases.
These bases can be constructed in exactly the same way as the alternative form for R
in equation (125), but by appropriately re-de®ning and moving the row with the mole
fraction entries from 2 through Nÿ1. Another way of viewing these N bases is by
retaining the form of the matrix R which was given in equation (84), but by
sequentially changing the de®nition of the species in the Nth row to each of the N
species in turn. In essence this implies that the N different bases for the subspace SV

that result in diagonal A for equal diffusivities can be generated by successively
interchanging each of the species with the Nth species in equation (84).

It is important to note that the exact solution to the Stefan±Maxwell equation is the
same regardless of the choice of basis, although the matrix A will of course be
different depending on the choice of the basis. This dependence of the matrix A on
the choice of the basis means that approximations to A (diagonal and non-diagonal
ones) will also be dependent on the basis.

For the MEDA model the best choice for the basis is simply the one that minimizes
the 2-norm of the error between the approximation and the exact solution to the
Stefan±Maxwell equation, and is given by

min
R
kV0r a ÿV0r ek2: �126�

Clearly it is impossible to determine the best basis without ®rst obtaining the exact
solution. Furthermore, the correspondence between minimizing the quantity Q in
equation (116) and minimizing the 2-norm of the error in the molar-diffusion
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velocity, does not carry over when the basis R is changed, i.e. the basis R that satis®es
the condition

min
R
kLrAÿ I�Nÿ1���Nÿ1�k2

F;

is not guaranteed to be the same basis that satis®es equation (126). Even if the
minimization condition on the Frobenius norm were chosen somewhat arbitrarily to
de®ne the best basis, it would require considerable computational expense at each
point in physical space and time, since R depends on the mole fractions. For the
MEDA model to be viable, the choice of species order must be independent of the
mole or mass fractions.

We now present an alternative approach to resolving the problem of dependence on
species order. In the MEDA model it is proposed that the optimal ordering of the
species be based on the following principle. Since the objective of the model is to
construct diagonal approximations in the reduced space of dimension Nÿ1, it is
incapable of diagonalizing the equation for one of the species (for the choice of R
given by eq. (84) this is the Nth species). This species' velocity is determined by the
constraint requirement. If the ordering of species is chosen such that the most
diagonally dominant row in the linear system is chosen to be the Nth species, then on
average this ordering would result in the most accurate approximation. Therefore, in
the MEDA model formulation (which uses the transformation matrix given by eq.
(84)) the rows in matrix equation (eq. 75) are rearranged so as to place the species
that satis®es the following condition

min
�

P
� 6�� D��

D������

� �
�127�

in the last row.

It is clear from the above that the problem of species order is not easy to resolve for
either the modi®ed FDA model or for the MEDA model, but the above approach
provides a reasonable solution without compromising any of the other advantages of
the MEDA model. It is noteworthy that while adding undetermined constants to the
modi®ed FDA model removes the species dependence, it does not address the
fundamental issue of which species order gives the least approximation error and
preserves limiting case solutions.

12.5. Generality of the minimization procedure

It is of interest to determine if non-diagonal approximations can be constructed using
the same minimization procedure. Unfortunately it turns out that it is only for
diagonal approximations that the error in the diffusion velocity of species � is
determined solely by the effective diffusion coef®cient associated with that species.
This permits us to write out the solution to the minimization problem, namely the
values of these effective diffusion coef®cients, explicitly without resorting to a matrix
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solution procedure. For non-diagonal approximations this is not possible, and the
original matrix problem is now simply replaced with a new one, which ®nally only
yields an approximate solution.

12.6. Case of some species with zero mole or mass fractions

It is not unusual to encounter this situation in mass-diffusion problems. The MEDA
model as formulated in terms of molar or mass-diffusion velocity will give in®nite
diffusion coef®cients due to possible division by zero in equations (123) and (124).
These equations are easily modi®ed to account for the general case where some mole
fractions are zero.

Let Z denote the set of NZ species whose mole fractions are zero such that

Z � f� : X� � 0g:
Then the rank of matrix M is (Nÿ1ÿNZ), and its elements are zero according as

M�� � 0; � � 1; . . . ;N; � 2 Z

M�� � 0; � � 1; . . . ;N; � 2 Z
�128�

This has the effect of deleting the row and column associated with the �th species in
the matrix equation for the molar-diffusion velocity formulation.

The expression for the elements of the matrix A in equation (122) needs to be
modi®ed to read

A
� � M
� ÿ �1ÿ �N��M
N

X�

XN

� �
; � 2 Z; �129�

where it is implied that the division by zero mole fraction is not attempted if the term
involving the delta function evaluates to zero. Finally the expression for the diagonal
elements lr� becomes

lr� �
M������ ÿ �1ÿ �N��M���N�X���=XN�P

� =2ZfM������ ÿ �1ÿ �N��M���N�X���=XN�g2
; � =2 Z; � 2 Z: �130�

Consistent with the fact that the matrix equation rows and columns corresponding to
the �th species (�2 Z) are zero, the corresponding molar-diffusion velocity and
diagonal coef®cient must also be zero:

lr� � 0; � 2 Z �131�

V0r a � 0; � 2 Z: �132�

The expression for the diagonal coef®cients of the mass-diffusion velocity
approximation involves the inverse transformation matrix Tÿ1, and therefore the
effect of zero mole fractions on its elements must be ascertained. The mole fraction
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X�
� always appears in the denominator of the elements of Tÿ1 in conjunction with
the corresponding mass fraction Y�
� in the numerator. In view of the relation

Y�
�
X�
�
� W


W�X�
;

where W
 is the molecular weight of species 
, the expression for the elements of the
transformation matrix given by eqs. (68)±(69) can be rewritten as

Tÿ1
������ �

W���
�W
�1ÿ Y���� �133�

Tÿ1
�� � ÿ

Y�W���
�W

; � 6� �; �134�

where �W �W�X�. It is clear from the above that all the elements of Tÿ1 are ®nite
quantities even when the mole fractions go to zero.

As a consequence the rank of matrix B�� � Tÿ1
�
 M
� is �N ÿ 1ÿ NZ�, and its elements

are zero according as

B�� � 0; � � 1; . . . ;N; � 2 Z

B�� � 0; � � 1; . . . ;N; � 2 Z
�135�

This has the effect of deleting the row and column associated with the �th species in
the matrix equation for the mass-diffusion velocity formulation.

Similarly rede®ning the expression for the elements of the matrix ~A (where it is
implied that the division by zero mole fraction is not attempted if the term involving
the delta function evaluates to zero), results in the general expression for the diagonal
elements kr

�

kr
� �

B������ ÿ �1ÿ �N��B���N�Y���=YN�
�� =2ZfB������ ÿ �1ÿ �N��B���N�Y���=YN�g2

; � =2 Z; � 2 Z: �136�

Again consistent with the fact that the matrix equation rows and columns
corresponding to the �th species (�2Z) are zero, the corresponding mass-diffusion
velocity and diagonal coef®cient must also be zero:

kr
� � 0; � 2 Z; �137�

Vr a � 0; � 2 Z: �138�

12.7. Computational considerations

It is arguable that with the advent of powerful computers and linear algebra software
packages, the computational expense associated with solving the full Stefan±
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Maxwell equations is no longer excessive. However, the comparison of computa-
tional expense for the full Stefan±Maxwell system and a simpli®ed diffusion model
should not be made on the basis of solving these equations at a single point in
physical space. This is because fully 3-D hydrodynamic codes must use some
computational stencil to represent the mole-fraction gradients that appear in the
driving forces. Under the Fickian approximation the decoupling of the species
evolution equations allows each of these equations to be solved independently and
ef®ciently. However, solving the full Stefan±Maxwell system means that the species
evolution equations must all be solved in a coupled fashion. In the context of iterative
methods used to solve the matrix equations in many hydrodynamic codes, this could
result in a signi®cant computational overhead due to slower convergence of the
iteration procedure. Therefore, the appropriate ®gure of merit for comparison is the
total computational cycles consumed in solving the species evolution equation system
for a 3-D problem, divided by the total number of species and the total number of grid
points in physical space. The asymptotic behavior of this ®gure of merit for large
number of species and large number of grid points would provide the de®nitive
answer of relative computational expense.

Also several computer codes use the Fickian diffusion approximation, and the
standard diffusion coef®cients used in these codes can be easily replaced with the
new minimum-error ones derived in the paper to give improved results. Finally, even
if the utility of these improved diffusion coef®cients and simpli®ed diffusion models
is being rendered obsolete by faster computers, the analysis serves to clarify our
understanding of simpli®ed diffusion models and may also have some pedagogical
value.

13. Summary

A systematic approach to understanding approximations to the Stefan±Maxwell
equation is presented. General forms for existing models are derived and important
features of the corresponding approximations are identi®ed. It is shown that
constraints on the velocity and driving forces imply that the diffusion problem can be
transformed to a lower-dimensional subspace where for limiting cases the Stefan±
Maxwell equation has a diagonal matrix structure. A new modeling approach is
proposed which consists of constructing approximations in this transformed space. A
novel procedure to minimize the approximation error for diagonal approximations is
used to construct a new MEDA simpli®ed diffusion model. This model automatically
satis®es the constraints on diffusion velocities and reproduces the correct limiting
case solutions. The new model (given by eqs. (112) or (113)) replaces the standard
Fickian approximation (eq. (58)) with the minimum error effective diffusion
coef®cients given by equations (130) and (136). It also has exactly as many model
coef®cients (Nÿ1) as there are degrees of freedom for a diagonal approximation. The
dependence on species order of approximations in the transformed space is dealt with
in a systematic fashion. The new model is more accurate than any other diagonal
simpli®ed diffusion model.
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Appendix

The 2-norm of the error in the modeled molar-diffusion velocity, k�V0rk2
2, can be

written as

k�V0rk2
2 � �V0rT�V0r: �139�

Given the de®nition of the error in the molar-diffusion velocity,

�V0r �V0r a ÿV0r e;

and using equation (109) and the fact that V0r e satis®es

AV0r e � Gr;

one may write

�V0r � �Lr ÿ Aÿ1�Gr: �140�

Substituting this into the right hand side of equation (139) for the 2-norm of the error
results in

k�V0rk2
2 � �V0rT

�V0r

� GrT�Lr ÿ Aÿ1�T�Lr ÿ Aÿ1�Gr:
�141�

Substituting Gr � AV0r e into equation (141) gives

k�V0rk2
2 �V0r eT

AT�Lr ÿ Aÿ1�T�Lr ÿ Aÿ1�AV0r e

�V0r eT�LrAÿ I�Nÿ1���Nÿ1��T�LrAÿ I�Nÿ1���Nÿ1��V0r e:
�142�

If the matrix LrAÿ I�Nÿ1���Nÿ1� is denoted by the matrix C, then

k�V0rk2
2 �V0r eT

CTCV0r e: �143�

Further let the singular value decomposition (SVD) of the matrix C be written as

C � URQT; �144�
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where U and Q are orthogonal matrices, and R � diagf�1; �2; . . . ; �Nÿ1g is a
diagonal matrix of singular values.

If the vector Z � �Z1;Z2; . . . ;ZNÿ1� is given by

Z � QTV0r e;

then the expression for the 2-norm of the error can be written as

k�V0rk2
2 �ZTR2Z �

XNÿ1

��1

Z����2
���Z���: �145�
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