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Role of fluid heating in dense gas–solid flow as revealed

by particle–resolved direct numerical simulation

S. Tennetia, B. Suna, R. Garga, S. Subramaniama,∗

aDepartment of Mechanical Engineering, Center for Computational Thermal–fluids

Research, Iowa State University,Ames, IA 50011, USA

Abstract

Heat transfer is important in gas–solid flows that are encountered in many

industrial applications such as energy generation. Computational fluid dy-

namics (CFD) simulations of heat transfer in gas–solid flow are based on

statistical theories that result in averaged equations (eg., Eulerian–Eulerain

two–fluid model). These averaged equations require accurate models for un-

closed terms such as the average gas–solid heat flux. The average gas–solid

or interphase heat flux is closed in terms of the Nusselt number Nu, which

is specified as a function of the solid volume fraction εs, mean flow Reynolds

number Rem and Prandtl number Pr. In developing closure models for the

average interphase heat flux it is assumed that the gas–solid flow is locally

homogeneous i.e., the effect of fluid heating (or cooling) on the average fluid

temperature is neglected. However, continuous heating (or cooling) of the

fluid along the flow direction causes the average fluid temperature to become

inhomogeneous. In this work we develop a particle–resolved direct numeri-

cal simulation (PR–DNS) methodology to study heat transfer in steady flow
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past statistically homogeneous random assemblies of stationary particles. By

using an analogy with thermally fully developed flow in pipes, we develop a

thermal similarity condition that ensures a statistically homogeneous Nusselt

number, even though the average fluid temperature field is inhomogeneous.

From PR–DNS results we find that the effect of fluid heating cannot be ne-

glected for gas–solid systems with high solid volume fractions and low mean

flow Reynolds numbers. These results indicate that the assumption of scale

separation implicit in two–fluid models is not always valid.

1. Introduction

Gas-solid flows occur in many industrial applications such as energy gen-

eration, food, chemical, and pharmaceutical processing. Carbon-neutral en-

ergy generation using biomass (Azar et al., 2006) or chemical looping com-

bustion (Shen et al., 2008) (CLC), and CO2 capture from flue gases using

dry sorbents (Yi et al., 2007; Abanades et al., 2004) are examples of emerg-

ing technologies (Wall, 2007) where an improved understanding of gas-solid

heat transfer is crucial for process and component design. For instance, ac-

curate prediction of the fluid–phase temperature field is very important for

the CLC application because the reaction rates in combustion chemistry are

highly temperature dependent. Similarly, in the CO2 capture process using

potassium–based dry sorbents the carbonation reaction is exothermic and

the regeneration of the sorbent is endothermic (Yi et al., 2007). Hence, gas–

solid heat transfer is crucial for maximizing process efficiency. Both CLC

and CO2 capture technologies can be implemented using fluidized beds, and

typical particle diameter values range from 50–150 µm. These particles are
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Figure 1: Schematic of a CFD simulation of gas–solid flow. In every computational grid

cell, governing equations for the averaged quantities in both phases are solved. Here,
〈

u
(f)
〉

is the average fluid–phase velocity,
〈

T (f)
〉

is the average fluid–phase temperature,
〈

u
(s)
〉

is the average solid–phase velocity and
〈

T (s)
〉

is the average solid–phase temperature. In

this schematic, 〈Qg−s〉 denotes the average gas–solid interphase heat transfer.

typically larger than the Kolmogorov length scale of turbulent dissipation η.

Moreover, gas–solid flow in fluidized beds can have a solid volume fraction

ranging from near close–packed (64% for random configurations of monodis-

perse spheres) to as low as 5% in the riser region. A fundamental under-

standing of heat transfer in fluid flow past finite sized particles (D > η) over

a wide range of solid volume fraction and flow Reynolds number is therefore

important for process design.

Computational fluid dynamics (CFD) simulations (Syamlal et al., 1993;

Kashiwa and Gaffney, 2003; Sun et al., 2007) of gas–solid flow are increas-

ingly being used as an efficient approach for design optimization because

experiments are often costly and time-consuming. In two–fluid CFD simula-

tions of gas–solid flow, the averaged equations governing mass, momentum,

and energy conservation are solved. Figure 1 shows a schematic of the com-

putational domain in a CFD simulation of gas–solid flow. In every grid cell,
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governing equations for averaged quantities such as volume fraction, velocity

and temperature are solved for both phases. Since these equations are ob-

tained using a statistical averaging procedure (Anderson and Jackson, 1967;

Drew and Passman, 1998), the average interaction terms corresponding to

mass, momentum, and energy exchange between different phases need to

be modeled. For example, two–fluid CFD formulations for heat transfer in

gas–solid flow require closure of the average gas–solid heat transfer 〈Qg−s〉.

The average interphase heat flux 〈Qg−s〉 is modeled in terms of an average

Nusselt number and the difference between the average fluid and solid–phase

temperature
(〈

T (f)
〉

−
〈

T (s)
〉)

. This Nusselt number is usually given by a

correlation that depends on solid volume fraction εs, mean slip Reynolds

number Rem and the Prandtl number Pr.

Correlations for the Nusselt number corresponding to gas–solid heat trans-

fer are typically obtained from a combination of experimental and theoretical

studies. However, the experimental data from which these empirical corre-

lations are deduced vary by orders of magnitude (Wakao and Kaguei, 1982;

Breault and Guenther, 2009). Experimental measurement of heat transfer in

gas–solid flow is challenging because of limited optical access and hence most

measurements are intrusive. Theoretical studies of heat transfer in gas–solid

systems are limited to creeping flow past ordered (Pfeffer and Happel, 1964;

Sorensen and Stewart, 1974) and random assemblies of spheres (Gunn, 1978;

Acrivos et al., 1980). The randomness in particle positions and velocities

together with the nonlinearity of the governing equations make the ana-

lytical treatment intractable at finite Reynolds numbers. Particle-resolved

direct numerical simulation (PR–DNS) of heat transfer in gas-solid flow is
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a first-principles, model-free simulation method that can used to gain bet-

ter understanding of heat transfer in gas-solid flow. Furthermore, PR–DNS

can be used to specify closure models for the unclosed average interphase

interaction terms that arise in CFD simulations of gas–solid flow.

In applying closure models for the average interphase interaction terms

such as the average interphase momentum transfer and interphase heat flux,

it is assumed that the gas–solid flow is locally homogeneous. In other words,

the average fluid and solid–phase velocities and temperatures are assumed

to be uniform in the grid cell. Therefore, in order to specify closure models

for the unclosed terms it is natural to simulate a statistically homogeneous

gas–solid suspension using PR–DNS. Indeed, PR–DNS has been used suc-

cessfully to solve the hydrodynamic problem and to provide a closure model

for the average gas–solid momentum transfer. The closure for the average in-

terphase momentum transfer is popularly known as a “drag law” and several

researchers have extracted computational drag correlations for gas–solid flow

by simulating steady flow past statistically homogeneous random assemblies

of stationary spherical particles (Hill et al., 2001a,b; van der Hoef et al., 2005;

Beetstra et al., 2007; Yin and Sundaresan, 2009a,b; Holloway et al., 2010;

Tenneti et al., 2011) in periodic domains. Tenneti et al. (2011) have rigor-

ously shown that the evolution equation for the volume averaged fluid–phase

momentum obtained from this setup is consistent with statistically homo-

geneous ensemble–averaged equations. This problem setup ensures that the

flow field is statistically homogeneous and statistics such as the average in-

terphase momentum transfer can be easily obtained by volume averaging.

In the heat transfer problem, the assumption of a statistically homoge-
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neous average fluid temperature implies that the effect of heating (or cooling)

by the particles does not change the average fluid temperature significantly.

However, continuous heating (or cooling) of the fluid by the particles along

the flow direction can cause the average fluid temperature to vary in that di-

rection. The extent of this variation of the average fluid temperature depends

on the solid volume fraction and mean flow Reynolds number. Although the

hydrodynamic problem is statistically homogeneous, for some regimes of gas–

solid flow it is conceivable that anisotropy in the fluid velocity results in

a statistically inhomogeneous fluid temperature field. Therefore, PR–DNS

methodologies that are used to specify a closure model for the average Nus-

selt number in terms of the average solid volume fraction and mean flow

Reynolds number must account for this inhomogeneity in the fluid temper-

ature field. In this work we present a PR–DNS methodology to study heat

transfer in statistically homogeneous gas–solid flow in periodic domains that

accounts for the inhomogeneity in the temperature field. We use the anal-

ogy of flow in a fixed bed of particles with thermally fully developed flow

in internal pipes to develop a thermal similarity condition that guarantees

a statistically homogeneous Nusselt number. Using this new formulation we

examine the regime of validity of the assumption of statistical homogeneity in

the average fluid temperature field that is implicit in two–fluid CFD models.

We use the Particle–resolved Uncontaminated–fluid Reconcilable Immersed

Boundary Method (PUReIBM) (Garg et al., 2010b; Tenneti et al., 2010,

2011) to solve for heat transfer in gas–solid flow. We employ three–dimensional

Cartesian grids to solve for the velocity, pressure, as well as the temperature

fields. Dirichlet boundary conditions for both velocity and temperature at
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the surface of the particle are imposed via an immersed boundary (IB) forc-

ing that is added to the momentum and temperature equations, respectively.

The idea behind the extension of the IB method to the temperature equa-

tion is similar to the one used by Feng and Michaelides (2008) to study heat

transfer in particle–laden flow with solid to fluid density ratio in the range

1.001–1.1.

The rest of the paper is organized as follows. The problem description

and the assumptions made to simplify the problem are described in sec-

tion 2. The formulation of the heat transfer problem that is simulated in the

particle–resolved DNS methodology is discussed in section 3. The governing

equations are developed in section 4 and the numerical method used in our

PR–DNS approach is described in section 5. The results obtained from PR–

DNS of heat transfer in gas–solid flow are discussed in section 6 and finally

the principal conclusions of this work are summarized in section 7.

2. Problem description

A schematic of the problem setup that is used in this work to study

gas–solid heat transfer in a homogeneous suspension of randomly distributed

spherical particles is shown in Fig. 2. The figure shows a random assembly

of spherical particles in a unit cell, which repeats infinitely in all three di-

rections. A steady flow is established by imposing a mean pressure gradient

that corresponds to a mean flow Reynolds number that is defined based on

the magnitude of mean slip velocity between the two phases as follows:

Rem =
|〈W〉| (1− εs)D

νf
. (1)
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Figure 2: Schematic showing contours of steady temperature field in a flow through fixed

bed of particles (solid volume fraction 0.1 and Reynolds number 20). In this schematic,

〈W〉 is the mean slip velocity between the solid and the fluid–phase. The fluid enters the

domain at a bulk temperature of Tm,in and all the particles are held at a uniform constant

temperature Ts.

Here |〈W〉| is the magnitude of the mean slip velocity between the solid

and fluid phases, which is in the direction shown in Fig. 2, D is the particle

diameter and νf is the kinematic viscosity of the fluid. The bulk temperature

of the fluid at the “inlet” of this unit cell is Tm,in and all the particles are held

at a uniform constant temperature of Ts. The bulk temperature of the fluid

is the flux–weighted average temperature in a plane perpendicular to the

direction of the mean slip velocity (see section 3 for a detailed definition).

The difference in the bulk fluid temperature and the surface temperature

of the particle drives gas–solid heat transfer. Here we consider only gas–

solid flow so the Prandtl number is chosen to be 0.72. We neglect viscous

heating, radiation and the effect of temperature change on the momentum

equation due to density variation (free convection effects). The simplifying
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assumptions used in our problem setup are justified in Appendix A. We

now develop a formulation that can be used to study the gas–solid flow heat

transfer problem described in this section.

3. Formulation of the heat transfer problem

In order to use the problem setup shown in Fig. 2 to quantify the average

Nusselt number, we must ensure that the heat transfer problem admits a

statistically homogeneous Nusselt number. In other words, a thermally fully

developed flow must be established in the fixed bed. Flow through a fixed

bed of spheres is anisotropic due to finite mean slip velocity 〈W〉 between

the solid and fluid phases. This directionality in the flow implies that fluid

downstream of a particle is heated up (or cooled down) by interphase heat

transfer. This continuous heating of the fluid by the particles results in a

mean fluid temperature that is inhomogeneous (Acrivos et al., 1980) in the

coordinate directed along the mean flow. However, since Nusselt number

is a nondimensional interphase heat flux, if the driving force (temperature

difference between bulk fluid and particles) has the same variation as that

of the interphase heat flux along the flow coordinate, it is possible to ob-

tain a statistically homogeneous Nusselt number. In this section we develop

a formulation that renders the Nusselt number statistically homogeneous,

although the interphase heat flux and the mean fluid temperature are inho-

mogeneous.

In order to understand the heat transfer problem in statistically homo-

geneous suspensions we draw analogy from forced convection heat transfer

in internal pipe flow. Statistically homogeneous gas–solid flow is analogous
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to fully developed pipe flow in two respects. Firstly, the flow field is statisti-

cally axisymmetric (Tenneti et al., 2012), similar to the fully developed flow

field in a pipe. Secondly, the average area occupied by the fluid (or the area

fraction) in any plane perpendicular to the streamwise direction is constant

in a statistically homogeneous suspension, and hence can be compared to a

pipe with a constant area of cross section. Therefore, in an average sense we

expect the heat transfer problem in statistically homogeneous gas–solid sus-

pensions with isothermal particles to be similar to thermally fully developed

flow in pipes with isothermal walls. For internal pipe flow, the flow is said

to be thermally fully developed when the scaled temperature is not varying

in the streamwise direction (Incropera et al., 2006), i.e.,

∂

∂x

(

T (x, t)− Tw

Tm(x, t)− Tw

)

= 0. (2)

Without loss of generality we will assume that the flow direction is along the

x–axis. In the definition of the scaled temperature given above, Tw is the

temperature of the isothermal pipe wall and Tm is called the “mixing–cup”

or “bulk” temperature, which is defined as follows:

Tm (x) =

∫

Af
(uT ) · e‖ dAf

∫

Af
u · e‖ dAf

(3)

where e‖ is the unit vector along the streamwise direction and Af is the area

occupied by the fluid in a plane perpendicular to the streamwise direction.

The thermally fully developed condition implies that for a pipe with constant

cross–sectional area and isothermal walls, the local heat transfer coefficient

at the wall (or Nusselt number) is independent of axial location (Incropera

et al., 2006). In other words, the local wall heat flux scaled by the temper-

ature difference (Tm (x)− Tw) is a constant. By using an analogy with pipe
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flow, the average Nusselt number in gas–solid flow will be statistically ho-

mogeneous if we ensure that the scaled temperature field θ, which is defined

below is statistically homogeneous:

θ (x, t) =
T (x, t)− Ts

〈Tm〉 (x, t)− Ts

. (4)

In this definition, 〈Tm〉 (x, t) is the ensemble–averaged bulk temperature and

Ts is the uniform temperature at which all the particles are maintained. In the

next section we discuss the governing equations and boundary conditions for

the problem of heat transfer past stationary isothermal particles in periodic

domains that ensure that the normalized interphase heat flux is statistically

homogeneous.

4. Governing Equations

The fluid temperature field T (x, t), in the absence of viscous heating,

radiation and free convection effects, obeys the following convection–diffusion

equation:
∂T

∂t
+

∂ (ujT )

∂xj

= αf
∂2T

∂xj∂xj

, (5)

where αf = kf/ (ρfCpf). Here kf is the thermal conductivity, ρf is the ther-

modynamic density, and Cpf is the heat capacity of the fluid respectively.

Equation (5) needs to be solved in the fluid together with the Dirichlet bound-

ary condition of T = Ts at the surface of the particles. At the boundaries of

the computational domain, periodic boundary conditions are applied on the

scaled temperature θ (cf. Eq. 4). In the definition of θ for a random particle

assembly, Eq. (3) gives an area–averaged estimate for the bulk temperature

〈Tm〉.
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Since the boundary conditions at the domain boundaries are in terms

of θ, it would appear to be easier to rewrite Eq. 5 in terms of θ and solve

directly for θ. However, the evolution equation for θ contains additional

terms that represent the evolution of the bulk temperature Tm. Therefore, in

order to solve for θ we need to solve an additional equation for Tm. Moreover,

solving for the evolution equation for Tm requires the computation of heat

flux from every particle that intersects the plane perpendicular to the mean

flow at each x location in the direction of the mean flow. Since there is a

finite number of particles in the computational domain, the solution may

suffer from statistical error. Therefore, it turns out to be easier to transform

the periodic boundary conditions on θ to obtain similarity conditions on the

temperature field T (x, t) and solve Eq. (5) for T (x, t).

In order to simplify the thermal similarity conditions and also to ho-

mogenize the boundary conditions on the particle surfaces we define a non

dimensional temperature field φ (x, t) as follows:

φ (x, t) =
T (x, t)− Ts

Tm,in − Ts
(6)

where, Tm,in is the bulk temperature at x = 0. Using this definition of the

non dimensional temperature, it is easy to see that the non dimensional bulk

temperature φm(x) has a similar definition:

φm (x, t) =
Tm(x, t)− Ts

Tm,in − Ts
. (7)

Substituting Eq. (6) in Eq. (5) gives the governing equation for the non

dimensional temperature:

∂φ

∂t
+

∂ (ujφ)

∂xj
= αf

∂2φ

∂xj∂xj
. (8)
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The isothermal boundary conditions on the particle surface reduce to φ = 0.

In order to understand the periodicity conditions and also for ease of

implementation we introduce a quantity called the heat ratio rh which is

defined as:

rh =
Tm,in − Ts

Tm,out − Ts

, (9)

where Tm,out is the bulk temperature at x = L and L is the length of the

box. The heat ratio is the ratio of the bulk temperature at the inlet (x = 0)

to the bulk temperature at the outlet (x = L). In other words the heat ratio

is simply the inverse of the non dimensional bulk temperature at x = L i.e.,

rh =
1

φm,out
. (10)

The heat ratio quantifies by how much a fluid particle heats up when it leaves

the box and so this quantity depends solely on the flow structure and the

interphase heat transfer in the domain. A control volume analysis of the

governing equation for φ reveals the following relation for the heat ratio:

rh =
Tm (x)− Ts

Tm (x+ L)− Ts
=

Tm (x± a)− Ts

Tm (x+ L± a)− Ts
, (11)

where a is any displacement in the streamwise direction. The periodic bound-

ary conditions on φ now appear in a very simple form:

φ (0, y, z) = rhφ (L, y, z) ,

φ (x, 0, z) = φ (x, L, z) ,

φ (x, y, 0) = φ (x, y, L) . (12)

An important point to be noted is that the heat ratio, or the amount by which

the fluid gets heated up (or cooled down) when it reaches the end of the box,
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is an unknown quantity and it is part of the solution. In this formulation

the thermal similarity conditions (cf. Eq. (12)) are defined in terms of the

heat ratio. So the heat transfer problem has to be solved iteratively until the

heat ratio converges. In the next section we describe the immersed boundary

methodology that is used to solve the heat transfer problem in statistically

homogeneous suspensions.

5. Solution Approach

The complete details of the hydrodynamic PUReIBM solver are discussed

elsewhere (Garg et al., 2010b; Tenneti et al., 2011). Here the discussion is

limited to the solution of the heat transfer problem in statistically homo-

geneous suspensions using PUReIBM. In PUReIBM, we employ Cartesian

grids and solve the mass and momentum conservation equations at all the

grid points (including those lying inside the particles). Similarly the nondi-

mensional temperature field is also solved at all grid points. The governing

equation for φ that is solved in PUReIBM is

∂φ

∂t
+

∂ (ujφ)

∂xj
=

∂qφj
∂xj

+ Isfφ, (13)

where qφ = αf∇φ is the heat flux, and fφ is the additional immersed bound-

ary (IB) forcing term that is nonzero only in the solid phase. The immersed

boundary forcing fφ accounts for the presence of the solid particles in the

domain by ensuring that the isothermal boundary condition φ = 0 is satisfied

on the surface of the solid particles.

The surface of the solid particle is represented by a discrete number of

points called boundary points. For spherical particles, the boundary points
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Interior Point

φi

Exterior Point

∆r

φs

∆r

r

φe

Figure 3: A schematic showing the computation of the immersed boundary forcing fφ for

an isothermal particle. The solid circle represents the surface of the particle at r. Open

dot shows the location of one exterior point at r+∆r (only one exterior point is shown for

clarity, although there is one exterior point for each interior point) and filled dots show the

location of interior points at r −∆r where the immersed boundary forcing is computed.

In the schematic, φe represents the temperature at the exterior point, φs is the surface

temperature while φi is the temperature at the interior point.

are specified by discretizing the sphere in spherical coordinates. In figure 3,

a schematic describing the computation of the IB forcing is shown for the

equatorial plane passing through the spherical particle. Another set of points

called exterior points are generated by projecting these boundary points onto

a sphere of radius r +∆r, where r is the radius of the particle (see exterior

point represented by an open circle on the dashed line in figure 3). Similarly,

the boundary points are projected onto a smaller sphere of radius r − ∆r

and these points are called interior points. In our simulations ∆r is taken to

be same as the grid spacing. The IB forcing is computed only at the interior

15



points. At these points the fluid temperature is forced in a manner similar

to the ghost cell approach used in standard finite-difference/finite-volume

based methods (Patankar, 1980). For the boundary condition φ = 0 used

in this work, the value of φ at the interior points is forced to be opposite in

magnitude to the value of φ at the corresponding exterior points.

The distinctive feature of PUReIBM is that the forcing fφ is computed

only at points lying inside the solid particles. This ensures that the fluid–

phase temperature field is not contaminated by the scalar IB forcing term fφ,

just as the fluid–phase velocity field is not contaminated by the hydrodynamic

IB forcing. The consequences of fluid velocity contamination by IB forcing are

discussed in detail by Tenneti et al. (2011). The computation of fφ is similar

to the computation of the IB forcing for the velocity field. The IB forcing

term fn+1
φ at the (n+ 1)th time–step is specified to cancel the remaining terms

in the governing equation for φ and force the nondimensional temperature

to its desired value φd at the interior points:

fn+1
φ =

φd − φn

∆t
+ Cn

φ −

(

∂qφj
∂xj

)n

(14)

where Cn
φ is the convective term at the nth time step.

The heat transfer equation (cf. Eq. 13) in PUReIBM is solved using

a pseudo-spectral method, with a Crank–Nicolson scheme for the viscous

terms, and an Adams-Bashforth scheme for the convective terms. The use

of Fourier transforms in the cross stream directions and the Crank–Nicolson

scheme in the streamwise direction results in an independent set of cyclic

tridiagonal systems that are solved using the Sherman–Morrison formula (Sher-

man and Morrison, 1950). The coefficient matrices in the tridiagonal systems
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depend on the heat ratio rh which is not known a priori. The temperature

field is initialized with rh = 1 and the simulation is performed iteratively till

the value of the heat ratio converges. It must be noted that in this work we

use the steady velocity field that is obtained from the hydrodynamic solver

and the velocity field is not advanced during the solution of the heat transfer

problem.

6. Results and Discussion

The hydrodynamic solver in the PUReIBM methodology has been ex-

tensively validated using a comprehensive suite of test cases (Tenneti et al.,

2011). In order to check the accuracy of the IB methodology for tempera-

ture and also to verify the thermal similarity boundary condition, we simulate

convective heat transfer in a square duct. The no slip walls of the duct for

the velocity field as well as the isothermal condition at the walls for the

temperature field are generated using the IB methodology described in the

previous section.

Using an analytical calculation, Shah and London (1978) found that the

Nusselt number for a thermally fully developed laminar flow in a square duct

is 2.976. We compare the Nusselt number obtained from PUReIBM simu-

lations for three different Reynolds numbers with the analytical solution in

table 1. We see that the results obtained from PUReIBM simulations agree

very well with the analytical solution. The numerical convergence of Nus-

selt number with grid resolution for a Reynolds number of 100 is shown in

Figure 4(a). In this figure we plot the relative error between the analyti-

cal and numerical solution. We see that the Nusselt number obtained from
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Reynolds number PUReIBM Analytical

20 3.013 2.976

50 3.029 2.976

100 3.033 2.976

Table 1: Comparison of Nusselt number obtained from PUReIBM simulation of duct flow

for three different Reynolds numbers with the Nusselt number derived from an analytical

calculation.
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Figure 4: (a) Convergence characteristics of Nusselt number with grid resolution for

internal duct flow at a Reynolds number of 100 are shown in. In this plot Nua referes to

the analytical value of the Nusselt number obtained by Shah and London (1978), ∆x is the

size of the grid cell and H is the channel height. (b) Contours of the scaled temperature

θ are shown in three planes along the direction of the flow shown by the arrow.
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PUReIBM simulations converge to the analytical value given by Shah and

London (1978). In figure 4(b) we plot the contours of the scaled temperature

θ (cf. Eq. 4) along the flow direction. This plot verifies that the thermal

similarity condition applied at the ends of the domain generates a thermally

fully developed flow. These tests confirm the accuracy and numerical con-

vergence of the PUReIBM temperature solver and also the correctness of the

application of the thermal similarity condition.

We now study heat transfer in statistically homogeneous gas–solid flow us-

ing PUReIBM DNS of steady flow and heat transfer past stationary, isother-

mal particles in periodic domains. Particle centers are initialized correspond-

ing to a specified mean solid volume fraction εs. The particles are fixed in

a random equilibrium configuration they attain following elastic collisions

(in the absence of ambient fluid) starting from a lattice arrangement with a

Maxwellian velocity distribution. The elastic collisions are simulated using

a soft–sphere discrete element model (Cundall and Strack, 1979; Garg et al.,

2010a). The pair correlation function at equilibrium specifies the particle

configuration for random assemblies. Steady flow is established in the fixed

bed by imposing a mean pressure gradient that corresponds to a mean flow

Reynolds number. The hydrodynamic solver has been extensively validated

in a comprehensive suite of tests (Tenneti et al., 2011). The steady velocity

field that is established in the fixed bed is used to evolve the temperature in

pseudo–time until the heat ratio reaches a steady state.

The heat transfer problem is statistically inhomogeneous only in the di-

rection of the mean flow and hence all statistics are estimated using area

averages in planes perpendicular to the mean flow. Each random particle
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configuration is termed a realization of the gas–solid flow corresponding to

a specified volume fraction and pair correlation function. The streamwise

variation of Nusselt number for the ωth realization is defined as

Nu (x;ω) =
q′′ (x;ω)D

kfP (φm(x)− φs)
. (15)

In this definition, q
′′

(x;ω) is the interphase heat flux from the particles to

the fluid that is averaged in the cross plane at the location x, and P is the

perimeter formed by cutting the particles with the plane. The streamwise

variation of Nusselt number obtained from a single realization is prone to

statistical uncertainty due to finite number of particles in the computational

domain. Therefore, the streamwise variation of Nusselt number from a single

realization must be averaged over multiple independent simulations (MIS),

each corresponding to a different realization of the particle configuration, to

get a better estimate for the ensemble–averaged streamwise Nusselt number.

If the streamwise Nusselt number obtained from averaging over several real-

izations is independent of the spatial location, we can say that the Nusselt

number is statistically homogeneous. In that case volume averaging can also

be used to improve this estimate.

From the PUReIBM heat transfer simulations we verify that the thermal

similarity boundary condition produces a statistically homogeneous stream-

wise Nusselt number. Figure 5 shows the streamwise variation of Nusselt

number (top panels) for a fixed bed with a solid volume fraction of 0.4 and

mean flow Reynolds number of 100. In Fig. 5 we compare the local Nus-

selt number obtained from averaging over 50 MIS (figure 5(a)) with that

obtained from averaging over 5 independent realizations (figure 5(b)). We

see that the Nusselt number obtained from 50 MIS is constant along the
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(a) (b)

Figure 5: Variation of Nusselt number and the area occupied by the fluid–phase along

the direction of the mean flow, obtained from PUReIBM simulations of heat transfer in a

fixed bed at a volume fraction of 0.4 and mean flow Reynolds number of 100. The local

Nusselt number is reported by averaging over (a) 50 and (b) 5 MIS.
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flow direction. The Nusselt number from 5 MIS shows some variation along

the axial direction. The finite size of the computational domain in the cross

stream direction and also the small number of independent realizations are

responsible for this streamwise variation in the Nusselt number. To see this

more clearly, the variation of the area occupied by the fluid Af along the

flow direction is also shown in Fig. 5 (bottom panels). Recall that one of

the conditions for statistical homogeneity of Nusselt number is that the area

occupied by the fluid should be constant along the flow direction. The fig-

ures indicate that the estimate for the average area occupied by the fluid

can vary along the flow direction and also at any given axial location there

are fluctuations in the area across realizations (indicated by error bars). The

amplitude of the fluctuation in the area is found to be about 7% when the

averaging is performed over 5 MIS. From convergence studies, we found that

50 realizations are required to reduce the amplitude in the fluctuation of

the area to 2%. Similar requirements on the number of independent real-

izations were reported by Xu and Subramaniam (2010) in their study of

particles in upstream turbulence. Figure 5(a) shows that the variation as

well as the level of fluctuations in the Nusselt number and the area fraction

are reduced when the averaging is performed over 50 MIS. We conclude that

for statistically homogeneous assemblies, the formulation developed for the

heat transfer problem ensures that the local Nusselt number is statistically

homogeneous.

Due to the statistical homogeneity of the Nusselt number in the stream-

wise direction, we can compute the average Nusselt number 〈Nu〉 by averag-

ing Nu(x) along the axial direction. Figure 6 shows compares the average
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Figure 6: Behavior of the average Nusselt number 〈Nu〉 with mean flow Reynolds number

for two solid volume fractions. Symbols indicate data obtained from PUReIBM simulations

while the solid lines are obtained from Gunn’s correlation (Gunn, 1978).

Nusselt number obtained from PUReIBM simulations with the Nusselt num-

ber predicted by Gunn’s correlation (Gunn, 1978). From the figure we see

that the average Nusselt number increases with both solid volume fraction

and mean flow Reynolds number and this behavior is consistent with the

trend predicted by the correlation. It must be noted that the Nusselt num-

ber correlation given by Gunn (1978) is a fit to experimental data obtained

by several researchers for packed beds (εs = 0.6). Given that the experimen-

tal data itself has a wide variation, the agreement between the PUReIBM

DNS and the correlation is excellent.

In addition to the average Nusselt number, the nature of inhomogeneity

of the fluid temperature field or fluid heating is important in modeling the

average interphase heat transfer 〈Qg−s〉. We plot the non-dimensional bulk

temperature φm along the flow direction for two mean flow Reynolds numbers

(1 and 100) and two solid volume fractions (0.2 and 0.4) in figure 7(a).
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(a) (b)

Figure 7: (a) Variation of the nondimensional bulk fluid temperature along the axial

direction for two mean flow Reynolds numbers (1 and 100) and two solid volume fractions

(0.2 and 0.4). (b) Behavior of heat ratio with Reynolds number for two solid volume

fractions (0.2 and 0.4).

The results confirm the fact that the temperature field is not homogeneous

in the flow direction. We see that the fluid heating (or cooling) is high

particularly for high solid volume fraction and low Reynolds number. This

result is more easily evident when we consider the behavior of heat ratio rh.

Recall that the heat ratio gives a measure of the fluid heating or cooling.

Figure 7(b) shows that the heat ratio is close to unity only at high mean flow

Reynolds numbers. The scale of variation of φm in Fig. 7(a) indicates that the

mean fluid temperature can be inhomogeneous on the scale of a few particle

diameters, whereas two–fluid models assume this field is homogeneous on the

scale of a grid cell. Therefore, the inhomogeneity of the average fluid–phase

temperature cannot be neglected in the CFD implementations of models for

average gas–solid heat transfer.
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7. Conclusions

In this work we present a particle–resolved direct numerical simulation

methodology to study heat transfer in statistically homogeneous gas–solid

flow. The Particle–resolved Uncontaminated–fluid Reconcilable Immersed

Boundary Method (Tenneti et al., 2011) (PUReIBM) has been extended to

investigate heat transfer in fixed periodic assemblies of monodisperse spher-

ical particles held at a constant uniform temperature. Periodic arrangement

of particles induces a velocity field that is periodic in all three directions.

Since the mean fluid velocity has a direction and all the particles are held at

the same temperature, the resulting temperature field will not be periodic.

In order to be consistent with the periodic arrangement of the particles, a

thermal similarity boundary condition is applied on the temperature field by

drawing analogy from thermally fully developed flow in pipes. The exten-

sion of PUReIBM to solve for the temperature field is validated by solving

the heat transfer problem in a square duct. Numerical convergence and the

validity of the thermal similarity condition in flow past random assemblies of

spheres is verified. From PUReIBM PR–DNS of heat transfer in fixed parti-

cle assemblies, we establish that the formulation developed for heat transfer

results in a statistically homogeneous average Nusselt number. We conclude

that fluid heating is important in gas–solid systems of high solid volume frac-

tion and low mean flow Reynolds number. Two–fluid CFD models that are

used to solve for heat transfer in gas–solid systems need to account for the

inhomogeneity in average temperature fields that is caused by fluid heating.
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Appendix A. Regime of applicability of the assumptions

The assumptions employed in this work and ther regime of validity are

discussed in this section. The use of a fixed bed setup for gas–solid flows is

justified if the configuration of the particles changes very slowly compared

to the time it takes to attain mean momentum balance. The time scale over

which the particle configuration changes depends on ReΘ = DΘ1/2/νf , which

is the Reynolds number based on the particle fluctuating velocity that is

characterized by the particle granular temperature Θ. The particle granular

temperature Θ is a measure of the variance in the particle velocities and

is defined as Θ = 1/3 〈v′′ · v′′〉, where v′′ is the fluctuation in the particle

velocity defined with respect to the mean particle velocity. Particle–resolved

simulations of freely evolving suspensions (Tenneti et al., 2010) and recent

high–speed imaging of particles (Cocco et al., 2010) show that this value

of ReΘ is O
(

1
)

for high Stokes number particles that are characteristic of

gas–solid flows (e.g., coal particles in air).

An important simplification made in this work is the use of a uniform

temperature for the particles. The extent of variation of the temperature

inside a particle is governed by the Biot number (Bi), which is defined as Bi =

hD/ks. In this definition h is the convection heat transfer coefficient between

the particle and the fluid, and ks is the thermal conductivity of the solid. For

many gas–solid systems the thermal conductivity of the solid is greater than

that of the gas by more than an order of magnitude (e.g. air–coal, air–Ferrous

oxide, air–fused silica) and results in a Biot number that is less than 0.1. The

small Biot number encountered in many practical gas–solid systems suggests

a lumped capacitance model for the particle temperature, where the spatial

26



variation of temperature inside the particle can be neglected.

In addition to the assumption of uniform temperature of the particle,

we also assume that this uniform temperature is constant in time i.e., we

assume the particles are isothermal. This simplification follows from the

observation that the thermal response time of the particles is large compared

to the time it takes for the fluid to travel a distance equal to the particle

diameter. The thermal response time of the particle τtp ∼ hAs/ (mCps),

where As is the surface area, m is the mass and Cps is the specific heat of the

particle, respectively. The time taken by the fluid to travel over a particle

τf ∼ D/ |〈W〉|, where 〈W〉 is the mean slip velocity between the particle

and the fluid. The ratio of these time scales

τtp
τf

∼

(

ρpCps

ρfCpf

)(

RemPr

Nu

)

,

where ρp is the density of the particle, ρf is the density of the fluid, Cpf is

the specific heat of the fluid and Nu is the Nusselt number. Experimental

studies (Gunn, 1978) of heat transfer in gas–solid systems reveal that the

ratio
RemPr

Nu
∼ O

(

1
)

. For gas–solid flows the ratio of the density of the

particles to the density of the fluid density is very high (∼ O
(

103
)

). Due

to the high thermal inertia of the particles the thermal response time of

the particles is about three orders of magnitude larger than the convective

time scale of the fluid. Hence, the uniform temperature of a particle can

be assumed to be constant in time. In addition to the assumption of a

uniform and constant particle temperature, we also assume that all particles

in the bed are maintained at the same temperature. The assumption that

the particles equilibriate to the same surface temperature is consistent with

earlier works (Gunn, 1978; Acrivos et al., 1980).
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Neglecting viscous dissipation, radiation and free convection effects lim-

its the gas–solid systems to which our simulation methodology applies. Vis-

cous heating becomes important in flows with Mach numbers comparable or

greater than unity and since we are concerned with subsonic flows, viscous

dissipation is neglected in this work. Free convection is quantified by the

Grashof number, which is defined as

Gr =
gβ (Tf − Ts)D

3

ν2
f

, (A.1)

where Tf is the free stream temperature, Ts is the temperature of the solid

surface, and β is the volumetric thermal expansion coefficient (β = 1/Tf for

gases). Free convection effects can be neglected if Gr/Re2m < 1. For each

Reynolds number, this constraint imposes an upper limit on the particle

diameter above which free convection effects cannot be neglected. For a

given value of Tf/Ts, the upper limit on the particle diameterD increases with

increasing Reynolds number. If a typical value of 100 is taken for the fluid to

solid temperature ratio (i.e. Tf/Ts = 100), and air is assumed to be the fluid

under terrestrial conditions (g = 9.81m/s2), then for a Reynolds number

Rem = 1 the particle diameter has to be less than 350µm for negligible free

convection. This restriction on the particle diameter becomes less severe as

the Reynolds number increases.

For an isolated particle at Ts with emissivity equal to one, and surrounded

by fluid at Tf , the ratio of radiation to forced convection heat transfer can

be expressed as

q̂rc =
qrad
qconv

=
σ(Ts + Tf)(T

2
s + T 2

f )

hfs

=
σD(Ts + Tf)(T

2
s + T 2

f )

Nu kf
,
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where σ = 5.67 × 10−8 W/m2·K4 is the Stefan–Boltzmann constant. As-

suming air to be the surrounding fluid at Tf = 1000K (kf = 0.060 W/m·K)

and the particle temperature Ts = 300K, for Stokes flow (i.e. Nu ≈ 2) the

ratio of radiation to forced convection heat transfer increases linearly with

particle diameter from 0.66 × 10−4 to 0.66 × 10−2, for particle diameter in

the range 1 to 100 microns. While this estimate is valid in the Stokes flow

regime, with increasing Reynolds number the higher value of average Nusselt

number reduces the ratio of radiation to forced convection heat transfer, thus

relaxing the restriction on particle diameter. These estimates of the relative

importance of forced convection to free convection and radiation heat trans-

fer show that the restriction on particle diameter is most severe in the Stokes

flow regime, and is progressively less restrictive with increasing Reynolds

number. Therefore, the assumptions used in this work are indeed applicable

and relevant to practical gas–solid systems.
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