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The Enskog kinetic theory is used as a starting point to model a suspension of solid
particles in a viscous gas. Unlike previous efforts for similar suspensions, the gas-phase
contribution to the instantaneous particle acceleration appearing in the Enskog equation
is modeled using a Langevin equation, which can be applied to a wide parameter space
(high Reynolds number, etc.). Attention here is limited to low Reynolds number flow,
however, in order to assess the influence of the gas phase on the constitutive relations,
which was assumed negligible in a previous analytical treatment. The Chapman-Enskog
method is used to derive the constitutive relations needed for the conservation of mass,
momentum and granular energy. The results indicate that the Langevin model for instan-
taneous gas-solid force matches the form of the previous analytical treatment, indicating
the promise of this method for regions of the parameter space outside of those attainable
by analytical methods (higher Reynolds number, etc.). The results also indicate that the
effect of the gas phase on the constitutive relations for the solid-phase shear viscosity and
Dufour coefficient is non-negligible, particularly in relatively dilute systems. Moreover,
unlike their granular (no gas phase) counterparts, the shear viscosity in gas-solid systems
is found to be zero in the dilute limit and the Dufour coefficient is found to be non-zero
in the elastic limit.

1. Introduction

The kinetic-theory-based description of rapid granular flows (i.e., those in which the
role of the interstitial fluid is neglected) has been an active area of research for the past
several decades (Campbell 1990; Goldhirsch 2003; Brilliantov & Pöschel 2004). Sinclair
& Jackson (1989) first extended this analogy to rapid gas-solid flows in vertical tubes
to explain the ubiquitous “core-annulus” flow, in which the solids are observed to have
a higher concentration near the pipe wall (annulus), while the center of the pipe (core)
remains relatively dilute. This extension of the kinetic-theory analogy to gas-solid systems
is appropriate for relatively massive particles (i.e., high Stokes number) engaging in nearly
instantaneous collisions. Such systems occur in a wide range of engineering operations,
including the riser section of a circulating fluidized bed, pneumatic conveying systems,
bubbling fluidized beds, etc. Correspondingly, the further development and application
of kinetic-theory-based models to high-velocity, gas-solid systems have mushroomed over
the last twenty years (Gidaspow 1994; Jackson 2000; Koch & Hill 2001; Gidaspow &
Jiradilok 2009; Pannala et al. 2010). Important research thrusts have included, but are
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not limited to, the effects of gas-phase turbulence, clustering instabilities, polydispersity,
cohesion, non-spherical particles, and friction.
The aim of the current effort is on the fluid-solid interaction force, Ffluid, present in

high-velocity gas-solid flows. Particular emphasis is put on the incorporation of Ffluid

into the continuum description of the solid-phase (which can later be coupled with gas-
phase mass and momentum balances for a complete description of the gas-solid system).
Before describing related previous works, it is worthwhile to introduce the physical picture
associated with this interaction force. Mathematically, this fluid-solid force is the sum
of normal (Fn) and tangential (Ft) forces experienced by the particle at its surface. For
the case of fluid flow in z-direction around a stationary sphere, the z-component of this
interaction force is given as

Ffluid,z = Fn,z + Ft,z

=

∫ 2π

0

∫ π

0

(−p|r=R cos θ)R2 sin θdθdφ+

∫ 2π

0

∫ π

0

(τrθ|r=R sin θ)R2 sin θdθdφ,

(1.1)

where p is the fluid pressure, τ is the (Newtonian) fluid stress, and R is the particle
radius. Accordingly, Ffluid depends on both the pressure and velocity-gradient fields at
the particle surface. As an illustration of the former, the pressure field is given in figure
1b, which shows a single motionless particle suspended in mean (far-away) fluid flow (or,
equivalently, a sphere moving in the same direction as mean fluid flow). For this simple
case, the fluid-solid force on the particle is typically expressed as Ffluid = β(Ug − U),
where β is a drag coefficient that depends on the particle Reynolds number, Ug is the
mean gas velocity andU is the (mean) particle velocity. A slightly more complex situation
is depicted in Figure 1c, where the particle is now moving in a different direction than
the mean fluid flow, as indicated by the arrow, but still unaffected by neighbor particle
effects. The presence of such particle motion leads to a change in the pressure field (and
velocity-gradient field, not shown) at the particle surface, thereby causing a change in
Ffluid (Eq. (1.1)). An even more complex scenario is shown in figure 1d, where the presence
of surrounding, moving particles causes a continual change in the pressure (and velocity)
field around the particle of interest, resulting in a dynamic gas-solid interaction force.
Accordingly, the fluid-solid force experienced by a single particle can be decomposed into
the contributions arising from mean slip velocity between the solid and the gas-phase
(figure 1b), instantaneous particle velocity fluctuations with respect to mean velocity of
the solid–phase (figure 1c) and the contribution due to neighbor particle effects (figure
1d). It is worthwhile to note that this last system (figure 1d) best captures the interactions
occurring in the practical gas-solid systems mentioned above (fluidized beds, etc.).
Early efforts to incorporate the effects of Ffluid into the continuum description of gas-

solids flows took a relatively straightforward approach, while more recent studies have
continued to increase the level of rigor. In particular, the first gas–solid models described
the solid phase according to the mass, momentum, and granular energy balances devel-
oped for granular (no fluid) systems, with the only modification being the addition of a
(mean) drag force onto the momentum balance. This drag force was typically described
using empirical relations obtained via settling experiments (Richardson & Zaki 1954;
Wen & Yu 1966; Gidaspow 1994), in which the force is a function of the relative mean
velocity between the two phases and the solids volume fraction ϕ [i.e., Ffluid = β(Ug−U),
where β is a function of Ug −U and ϕ]. It is worthwhile to note that with this approach,
the granular energy balance does not contain any new terms arising from fluid-phase
effects, nor do any of the constitutive relations for the solid phase (stress, heat flux, or
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Figure 1. (color online) Illustration of different contributions to the instantaneous gas-solid
force in a suspension with a mean fluid velocity Ug and a mean particle velocity U is shown
in top left panel (a). Pressure contours are shown for (b) a single particle far away from its
neighbors and moving with a velocity equal to the mean particle velocity (top right panel), (c)
a particle moving in a different direction than the mean fluid flow and far from its neighbors
(bottom left panel), and (d) a collection of particles moving in different directions (bottom right
panel). The pressure contours are obtained from particle–resolved direct numerical simulations
(PR–DNS) for a gas-solid suspension that corresponds to a solid volume fraction of 0.2 and
mean flow Reynolds number 0.01.

collisional cooling rate) incorporate fluid-phase effects. As an example, see the pioneering
gas-solid model proposed by Sinclair & Jackson (1989), who used the governing balances
of Anderson & Jackson (1967) and the granular theory of Lun & Savage (2003). A more
exact approach has since been adopted, in which fluid-phase effects are incorporated at
the starting point of the derivation for the solid-phase balances and their constitutive
equations, namely the kinetic equation (e.g., Boltzmann or Enskog kinetic equation):

∂tf + v · ∇f +
∂

∂v
·
[(

Ffluid

m

)
f

]
+ g · ∂f

∂v
= J [f, f ], (1.2)

where f is the one–particle velocity distribution function, v is the instantaneous particle
velocity, m is the particle mass, g is the gravity vector, and J [f, f ] is the collisional
operator. It is important to note here that Ffluid(r,v, t) is a function of the instantaneous
particle velocity and can vary in both time and space. Strictly speaking, then, Ffluid is an
instantaneous force rather than a mean force - where a mean force is one which depends
on the hydrodynamic, or mean, fields. Although not strictly correct, the treatment of
Ffluid as a mean force is considerably easier since it can be taken outside the differential
in Eq. (1.2). Along these lines and following from the earlier discussion surrounding
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Figure 1, different approximations for Ffluid have been made, leading to differences in
the balance equations appearing in the literature.
Consider first the simplest case, where Ffluid is approximated as a mean force , namely

Ffluid = β(Ug − U), where β is a function of hydrodynamic (mean) variables (Figure
1a). For this treatment, a mean drag force will appear in the solid-phase momentum
balance, consistent with the treatment described in the previous paragraph (Sinclair &
Jackson 1989), but no terms appear in the granular energy equation. Next, consider an
approximation which accounts for the fluctuation in the particle velocity (Figure 1b) in
the following manner: Ffluid = β(Ug − v) and thus is a function of the instantaneous
particle velocity v, though β remains a function of the hydrodynamic (mean) fields
only. In this case, an additional sink term (which is proportional to β) arises in the
granular energy balance due to viscous drag (for example, see Koch (1990)). In a third
and improved approximation, fluctuations in both phases are considered in the fluid-force
relation (Figure 1c), namely Ffluid = β(vg−v), where vg is the instantaneous gas velocity
and with β again typically treated as a function of mean variables. This treatment leads
to an additional source term in the granular energy balance arising from fluid-dynamic
interactions (for example, see Gidaspow (1994)). However, this approximation leads to a
single point fluid-particle velocity covariance that Xu & Subramaniam (2006) have shown
to be inconsistent for finite particle size.
In addition to the aforementioned impact of the Ffluid treatment on the balance equa-

tions, the form of Ffluid will also impact the constitutive relations for the solid-phase
quantities (shear stress, heat flux, and collisional cooling rate), as these are also derived
from the kinetic equation (1.2). The incorporation of such effects into the constitutive
relations has received less attention in the literature. Several groups (Ma & Ahmadi
1988; Balzer et al. 1995; Lun & Savage 2003) have derived the constitutive relations us-
ing a description of Ffluid which depends on the instantaneous fluid (vg) and solid (v)
velocities. With regard to vg, it is worth noting that these works have included veloc-
ity fluctuations arising from fluid-phase turbulence. Other groups (Zaichik et al. 2009;
Simonin et al. 2006; Février et al. 2005) have also incorporated the effect of turbulent
gas–phase velocity fluctuations on the one-particle velocity distribution function in the
regime of dilute, sub–Kolmogorov size particles. The type of fluctuations depicted in
Figure 1c, on the other hand, do not require the presence of turbulent instabilities. More
specifically, for the system of Figure 1c, the presence of numerous particles moving in
different directions will lead to continually-changing fluid–dynamic interactions between
particles (i.e., fluctuations in the fluid velocity and pressure fields) even at low Reynolds
number. Finally, and perhaps more importantly, a common assumption in works that
incorporate gas- and/or solid-phase fluctuations is that the basic form of the mean fluid
force [Ffluid = β(Ug − U)] also holds for its instantaneous counterpart by simply re-
placing the mean hydrodynamic fields with instantaneous ones [e.g., Ffluid = β(vg −v)].
Recent findings by Tenneti et al. (2010b), however, indicate that such treatments are not
appropriate. Figure 2 shows a plot of the streamwise component of fluctuations in parti-
cle acceleration A′′ versus the streamwise component of fluctuations in particle velocity
V. The fluctuations in the particle acceleration and velocity are defined with respect to
their corresponding mean values. The particle acceleration fluctuations are normalized
by the standard deviation in the particle acceleration distribution σA, while the fluctu-
ations in the particle velocity are normalized by the standard deviation in the particle
velocity distribution σV . Square symbols are the particle acceleration fluctuations ob-
tained from particle–resolved direct numerical simulation (PR–DNS) of a freely evolving
gas–solid suspension. Triangles are the fluctuations in the particle acceleration predicted
by using a model for the fluid–particle force of the form Ffluid = β (Ug − v). It is clear
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Figure 2. (color online) Scatter plot of streamwise component of particle acceleration fluctu-
ations A′′ (normalized by the standard deviation in the particle acceleration distribution σA)
versus the streamwise component of particle velocity fluctuations V (normalized by the standard
deviation in the particle acceleration distribution σv). Square symbols (�) denote the fluctua-
tions in the particle acceleration obtained from PR–DNS of a freely evolving gas–solid suspension
corresponding to a solid volume fraction of 0.2, mean flow Reynolds number of 1.0 and solid to
fluid density ratio of 1000. Upper triangles (△) denote the fluctuations in the particle accelera-
tion predicted by using a model for the fluid–particle force of the form Ffluid = β (Ug − v).

that the joint statistics of the particle acceleration and particle velocity that are cru-
cial for the accurate prediction of the evolution of granular temperature are not well
captured by this simplified class of instantaneous models for Ffluid. Although the model
Ffluid = β (Ug − v) results in a sink of granular temperature, it does not account for
the source in granular temperature that is responsible for points in quadrants I and III
of the fluctuating particle acceleration–velocity scatter plot (see Tenneti et al. (2010a)
for details). Moreover, the scatter observed in the particle acceleration fluctuations sug-
gests a stochastic contribution to the fluid–particle force that arises due to the effect of
the neighbor particles. For the limiting case of Stokes flow, Koch and co-workers (Koch
1990; Koch & Sangani 1999) were able to correctly describe the acceleration–velocity cor-
relation via analytical means (Koch 1990) and through the use of multipole expansions
(Koch & Sangani 1999). Extensions of analytical approaches beyond the Stokes limit
are difficult since the governing Navier-Stokes equations become nonlinear (Koch & Hill
2001). A further assumption of their analysis was that the influence of gas-phase effects
on constitutive relations for the solid phase are negligible at sufficiently large Stokes
number; such effects appeared in the balance equations only.
A long-term objective of this effort, then, is to develop a framework in which (i) an

accurate instantaneous model for Ffluid is developed over a wide range of conditions,
and (ii) the resulting Ffluid model is used to derive solid-phase balance equations and
constitutive relations which fully incorporate gas-phase effects. With regard to (i), the
instantaneous gas-solid force is modeled using a Langevin equation because the particle
velocity autocorrelation decays exponentially for a range of mean flow Reynolds numbers
(see Fig. 3). With regard to (ii), the Langevin model for Ffluid is then used in the kinetic
equation (1.2) to derive the balance equations and constitutive relations. As a first step
in this direction, this two-part process is carried out here for low Reynolds numbers. It
is important to note that the methodology itself is not restricted to this limit; instead,
the focus here is to demonstrate proof-of-concept by (i) comparing the Langevin model
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for Ffluid with previous results for the Stokes limit (Koch 1990; Koch & Sangani 1999),
and (ii) use this model to assess the influence of gas-phase effects on the constitutive
relations, which were neglected in the analytical treatment. For future extensions to
higher Reynolds numbers, the coefficients in the Langevin model can be obtained from
PR–DNS as described by Tenneti et al. (2010a) (see also Tenneti et al. (2011)).

2. Fluid–solid force (Ffluid) model

As mentioned above, to develop a closed kinetic equation for the one-particle velocity
distribution function f(v) (Eq. (1.2)), a description of the instantaneous particle force
Ffluid is needed. As the name implies, this instantaneous force is a function of the in-
stantaneous velocities of both the gas and solid phases (vg and v, respectively), rather
than solely the corresponding mean velocities (Ug and U). However, consideration of vg

and v for finite particle size would require consideration of two–point statistics (Sun-
daram & Collins 1999; Xu & Subramaniam 2006). Note that fluctuations in the particle
velocity may arise from particle interactions (collisional) and/or gas-solid interactions.
Although in the special case of Stokes flow the fluid–dynamic interaction arising from
neighbor particles can be treated analytically (Koch 1990) for the general case of finite
fluid inertia, this is not feasible.
Therefore, a generalized Langevin model is proposed for the instantaneous impulse as

follows

mdv = Ffluiddt = −β (U−Ug) dt− γ ·Vdt+mB · dW, (2.1)

where V = v − U is the particle fluctuation (or peculiar) velocity, the vector dW is a
Wiener process increment (stochastic term), and the scalar β and the tensors γ and B
are the model coefficients. The first term on the right-hand-side represents the portion
of the drag force arising from the mean motion of particle and solid phase; the second
term is traced to fluctuations in the particle velocity; the third term is a stochastic model
for the change in particle momentum due to shear stress and pressure contributions at
the particle surface that arise from the fluid velocity and pressure disturbances caused
by neighbor particles. This is one way to extend the analysis of Koch (1990) for point
particles in Stokes flow regime to gas-solid flows with finite fluid inertia and finite particle
size. Regarding this third term, note that the instantaneous velocity for the gas phase can
be determined rigorously by considering the distribution function for the fluid velocity
(in addition to that of the particle velocity, Eq. (1.2)), though such an approach would
involve two-point distributions (Sundaram & Collins 1999) which is outside of the current
scope and thus a stochastic model is adopted here. In the following section we outline
the assumptions made in this work and justify their validity for the range of physical
parameters considered here.

3. Assumptions and their range of validity

The assumptions that are used in this work are relevant to the range of dimension-
less physical parameters encountered in a circulating fluidized bed (CFB). The relevant
independent set of dimensionless parameters are the solid volume fraction ϕ, the mean
flow Reynolds number Rem, the Reynolds number associated with the particle velocity
fluctuations ReT, and the ratio of the densities of the solid and the gas ρs/ρg. The mean
flow Reynolds number is defined as

Rem =
(1− ϕ)ρgσ|∆U|

µg
, (3.1)
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where, ∆U = U − Ug, σ is the particle diameter and ρg, µg are the mass density and
dynamic viscosity of the gas, respectively. The Reynolds number associated with the
particle velocity fluctuations is defined as

ReT =
ρgσ

µg

√
T

m
, (3.2)

where T is the granular temperature (cf. Eq. (4.10)) and m is the mass of the particle.
It is worth noting that some previous works (Koch 1990) on gas-solid suspensions in the
Stokes flow regime cast their results in terms of a Stokes number St (rather than Rem
and/or ReT). Here, for a three-dimensional system, we define the two relevant Stokes
numbers as

Stm =
m|∆U|
6πµgR2

, (3.3)

StT =
m
√
T/m

6πµgR2
, (3.4)

where R = σ/2 is the radius of a particle. Thus, the relationship between the Stokes
numbers and corresponding Reynolds numbers are

Stm =
1

9(1− ϕ)

ρs
ρg

Rem, (3.5)

StT =
1

9

ρs
ρg

ReT, (3.6)

where ρs = 6m/(πσ3) is the mass density of a particle. Whereas Rem and ReT are
measures of the fluid inertia (related to mean and fluctuating components of particle
motion, respectively) to viscous effects, the Stokes numbers Stm and StT are measures
of particle inertia to fluid viscous effects. The results presented in this paper (cf. §8) will
give ranges for each of these parameters for purposes of greater physical understanding
(even though they are not independent quantities).
The most important assumption in this work is that the instantaneous impulse can be

modeled using a Langevin equation (cf. Eq. (2.1)). The assumption that is implicit in
using this model is that the change in particle momentum due to neighbor particle effects
occurs on time scales much smaller than those associated with drag due to the mean slip
and particle velocity fluctuations. The validity of the Langevin model can be justified by
examining the decay of particle velocity autocorrelation function that is computed from
PR–DNS (that accounts for all fluid–dynamic interactions exactly). The particle velocity
autocorrelation function ρ (s) is defined as

ρ (s) =
⟨Vi (t0)Vi (t0 + s)⟩
⟨Vk (t0)Vk (t0)⟩

, (3.7)

where V denotes fluctuation in the particle velocity (or peculiar velocity) around the
mean velocity computed from PR–DNS and s is the separation in time. The angular
brackets ⟨· · · ⟩ in Eq. (3.7) denote an average over all particle configurations and velocities.
The integral time scale for the autocorrelation function is

TL =

∫ ∞

0

ρ (s) ds. (3.8)

If a stochastic process obeys the Langevin equation with an integral time scale of TL,
then its autocorrelation function should decay exponentially (Gardiner 1985), i.e., ρ (s) =



8 V. Garzó, S. Tenneti, S. Subramaniam, and C. M. Hrenya

(a) (b)

Figure 3. (color online) Decay of the particle velocity autocorrelation function. Figure 3(a)
compares the particle velocity autocorrelation function computed from PR–DNS (symbols) of
freely evolving suspension (volume fraction of 0.2, mean flow Reynolds number 1.0 and solid to
fluid density ratio of 1000) with the exponential decay predicted by the Langevin model (solid
line). Figure 3(b) is the same as Fig. 3(a) for a suspension with a solid volume fraction of 0.35.

e−s/TL . The velocity autocorrelation function computed from PR–DNS of freely evolving
gas–solid suspensions and the exponential decay predicted by the Langevin model are
compared in Fig. 3. The good agreement of the decay of the velocity autocorrelation
function obtained from PR–DNS with the exponential decay indicates that the use of
Langevin model is appropriate.
Although the quantities γ and B in Eq. (2.1) are given as tensors in the most general

case, as a first approximation, we take γij = γδij and Bij = Bδij to obtain a distribution
function which is isotropic in velocity space for the homogeneous flow and additionally
provide analytical expressions for all the transport coefficients and the collisional cooling
rate. We verify this assumption of isotropy by computing the state of anisotropy of the
particle–phase Reynolds stress (RS), defined as the average ⟨ViVj⟩, from PR–DNS. The
invariants of the deviatoric part of the normalized particle–phase RS, ξRS and ηRS, are
plotted on the Lumley plane (Lumley & Newman 1977) to characterize the state of
anisotropy. In the three-dimensional case, the deviatoric part of the normalized particle–
phase RS is defined as

bij =
⟨ViVj⟩
⟨VkVk⟩

− 1

3
δij , (3.9)

and the invariants are defined following Lumley & Newman (1977) as 6η2RS = bijbij and
6ξ3RS = bijbjkbki. The state of anisotropy of the particle–phase RS is studied by plotting
ηRS versus ξRS. The origin of this plane denotes an isotropic state, while the point
(1/3, 1/3) denotes a one–component axisymmetric state of the particle–phase RS. The
evolution of the invariants obtained from PR–DNS for ϕ = 0.35, ρs/ρg = 1000 and two
different Reynolds numbers (Rem = 1.0 and Rem = 0.5) is plotted in Fig. 4. The results
show that the state of anisotropy in the solid–phase is small for the range of physical
parameters considered in this work and hence the assumption of isotropic coefficients
is justified. The results also indicate that the effect of collisions rapidly isotropizes the
anisotropy introduced by fluid–dynamic interactions in the particle–phase RS. It is also
worthwhile to note that this assumption is consistent for a homogeneous system, since
the homogeneous (zeroth order) solution to the kinetic equation (1.2) will be isotropic
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Figure 4. Evolution of the invariants of the deviatoric part of the normalized particle–phase RS
in time. Blue symbols denote earlier time and red symbols denote later time. These results are
obtained from PR–DNS of freely evolving suspensions corresponding to a solid volume fraction
of 0.35 and solid to fluid density ratio of 1000 for the following mean flow Reynolds numbers: (a)
1.0 and (b) 0.5.

as no spatial gradients exist for a homogenous system. The description for general forms
for γ and B is an interesting problem to be addressed in the future.
The final assumption made in this work is related to the Chapman–Enskog expansion

(see §5 for further details), which is essentially a perturbation method about a small
Knudsen number. The Knudsen number Kn is defined as the ratio of the mean free path
of the particles to a length scale that characterizes the distance over which gradients in
the hydrodynamic variables occur. The mean free path is a function of the solid volume
fraction only, while the length scale associated with the gradients depends on the specific
gas–solid flow system. Since the results in this work are applicable to any geometry and
flow situation, assessment of this low–Kn assumption is not possible a priori.

4. Kinetic equation for gas-solid flows

We consider a suspension of solid particles of mass m and diameter σ immersed in a
gas. Under rapid flow conditions, particles are usually modeled as a gas of inelastic hard
spheres. In the simplest model, the spheres are completely smooth so that the inelasticity
of collisions is characterized by a (constant) coefficient of normal restitution 0 < α 6 1.
As described in §2, the influence of gas phase on particles is accomplished by the inclusion
of three new quantities (see Eq. (2.1)) in the instantaneous particle force: β, γ and B.
Under the above conditions and in the presence of the gravitational force mg, the

Enskog kinetic equation (Brey et al. 1997; Brilliantov & Pöschel 2004) for the one-particle
velocity distribution function f(r,v, t) of grains reads

∂tf + v · ∇f − β

m
∆U · ∂f

∂V
− γ

m

∂

∂V
·Vf − 1

2
ξ

∂2

∂V 2
f + g · ∂f

∂V
= JE [r,v|f, f ] , (4.1)

where

JE [r,v1|f, f ] = σd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

×
[
α−2χ(r, r− σ)f(r,v′

1; t)f(r− σ,v′
2; t)

−χ(r, r+ σ)f(r,v1; t)f(r+ σ,v2; t)] (4.2)
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is the Enskog collision operator. Here, d is the dimensionality of the system (d = 2 for
disks and d = 3 for spheres), σ = σσ̂, σ̂ being a unit vector pointing in the direction
from the center of particle 1 to the center of particle 2, σ is the particle diameter, Θ is
the Heaviside step function, g12 = v1 − v2 and χ[r, r + σ|{n(t)] is the equilibrium pair
correlation function at contact as a functional of the nonequilibrium density field n(r, t)
defined by

n(r, t) =

∫
dvf(r,v, t). (4.3)

For the case of spheres (d = 3) considered in this work, the Carnahan-Starling approxi-
mation (Carnahan & Starling 1969) for χ is given by

χ(ϕ) =
1− 1

2ϕ

(1− ϕ)3
. (4.4)

The primes on the velocities in Eq. (4.2) denote the initial values {v′
1,v

′
2} that lead to

{v1,v2} following a binary collision:

v′
1 = v1 −

1

2

(
1 + α−1

)
(σ̂ · g12)σ̂, v′

2 = v2 +
1

2

(
1 + α−1

)
(σ̂ · g12)σ̂. (4.5)

Moreover, in Eq. (4.1), B2 ≡ ξ and

U(r, t) =
1

n

∫
dvvf(r,v, t) (4.6)

is the mean particle velocity. As said before, the scalar coefficients β, γ, and ξ appearing
in Eq. (4.1) are associated with the instantaneous gas-solid force. Recall that β appears
in the mean portion of this drag force (first term on right-hand-side of Eq. (2.1)), and the
terms γ and ξ are associated with the fluctuating solid velocity and particle momentum
change caused by neighbor particles, respectively (Abbas et al. 2009).
The macroscopic balance equations for the system are obtained when one multiplies

the Enskog equation (4.1) by {1,mV,mV 2} and integrates over velocity. After some
lengthy algebra one gets

Dtn+ n∇ ·U = 0 , (4.7)

DtU+ (mn)−1∇ · P = − β

m
∆U+ g , (4.8)

DtT +
2

dn
(∇ · q+ P : ∇U) = −2T

m
γ +mξ − ζ T . (4.9)

In the above equations, Dt = ∂t +U · ∇ is the material derivative and

T (r, t) =
1

dn

∫
dvmV 2f(r,v, t) (4.10)

is the granular temperature. This quantity is a measure of the mean square fluctuating
particle velocity. The collisional cooling rate ζ is proportional to 1 − α2 and is due to
dissipative collisions. The pressure tensor P(r, t) and the heat flux q(r, t) have both kinetic
and collisional transfer contributions, i.e., P = Pk + Pc and q = qk + qc. The kinetic,
or streaming, contributions stem from the particles carrying momentum and granular
energy with them as they travel from one part of the domain to another, while the
collisional contributions arise from a transfer of momentum and granular energy between
particles as they collide. The kinetic contributions Pk and qk are given, respectively, by

Pk(r, t) =

∫
dvmVVf(r,v, t), qk(r, t) =

∫
dv

m

2
V 2Vf(r,v, t), (4.11)
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and the collisional transfer contributions are (Brey et al. 1997; Garzó & Dufty 1999)

Pc(r, t) =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

2σ̂σ̂

×
∫ 1

0

dx f (2) [r− xσ, r+ (1− x)σ,v1,v2; t] , (4.12)

qc(r, t) =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

2(G12 · σ̂)σ̂

×
∫ 1

0

dx f (2) [r− xσ, r+ (1− x)σ,v1,v2; t] . (4.13)

Here, G12 = 1
2 (V1 +V2) is the velocity of center of mass and

f (2)(r1, r2,v1,v2, t) ≡ χ(r1, r2|n(t))f(r1,v1, t)f(r2,v2, t). (4.14)

Finally, the collisional cooling rate is given by

ζ(r, t) =

(
1− α2

)
4dnT

mσd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

3f (2)(r, r+ σ,v1,v2; t).

(4.15)
For a statistically homogeneous suspension undergoing elastic collisions (α = 1), ζ = 0

and the granular energy equation (4.9) becomes

dT

dt
= −2T

m
γ +mξ. (4.16)

Comparing this equation with the granular energy equation given for spheres (d = 3) by
Koch & Sangani (1999)

3

2

dT

dt
= −Γvis + S, (4.17)

one sees that there is a one-to-one correspondence between the coefficients γ and ξ and
the dissipation Γvis and source S in Koch & Sangani (1999), respectively. Therefore,
for Stokes flow we can use the existing analytical closure from Koch (1990) for solid
volume fraction ϕ 6 0.1. For ϕ > 0.1, Koch & Sangani (1999) used simulations based
on multipole expansions to propose source and dissipation terms as a function of solid
volume fraction. It must be noted that the correlation used for the drag coefficient does
not include the effect of forces like buoyancy, shear lift, spin lift, etc. Accordingly, these
coefficients depend on constant parameters (particle mass and diameter, gas viscosity) as
well as the hydrodynamic (mean) variables (solids concentration, gas and solid velocities,
and granular temperature); explicit dependencies are given in §8.
The macroscopic balance equations (4.7)–(4.9) are not entirely expressed in terms

of the hydrodynamic fields due to the presence of the collisional cooling rate ζ, the
pressure tensor P and the heat flux q which are given as functionals of the distribution
function f(r,v, t). However, if this distribution function can be expressed as functionals
of the hydrodynamic fields, then the collisional cooling rate and the fluxes will also
become functional of the hydrodynamic fields through Eqs. (4.11)–(4.13) and (4.15). Such
expressions are called constitutive relations and are the link between the exact balance
equations and a closed set of equations for the fields n, U and T . This hydrodynamic
description can be derived by looking for a normal solution to the Enskog equation by
means of the Chapman-Enskog (CE) method (Chapman & Cowling 1970) adapted to
inelastic collisions, as detailed in §5.
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It is worthwhile to note that the macroscopic equations given in Eqs. (4.7)–(4.9) differ
from their granular (no gas phase) counterparts (Garzó & Dufty 1999) via the appearance
of three additional terms arising from the presence of the gas phase, and more specifically
the instantaneous drag force (Eq. (2.1)). The first of these contains β and appears in the
momentum balance (Eq. (4.8)); this term represents the mean drag force between the
two phases. The other two terms stemming from the gas phase appear in the granular
energy balance (Eq. (4.9)); the term containing γ represents the sink due to viscous drag
while the term containing ξ represents the source arising from the change in particle
momentum due to neighbor particles. Similar effects of the gas phase on the constitutive
expressions for the pressure tensor P, the heat flux q and the collisional cooling rate ζ
will be presented in §6 and §7.

5. Chapman-Enskog solution

The CE method assumes the existence of a normal solution such that all space and
time dependence of the distribution function occurs through the hydrodynamic fields

f(r,v, t) = f [v|n(r, t), T (r, t),U(r, t)] . (5.1)

The notation on the right hand side indicates a functional dependence on the density,
temperature and flow velocity. For small spatial variations (i.e., low Knudsen numbers),
this functional dependence can be made local in space through an expansion in gradients
of the hydrodynamic fields. To generate it, f is written as a series expansion in a formal
parameter ϵ measuring the nonuniformity of the system,

f = f (0) + ϵ f (1) + ϵ2 f (2) + · · · , (5.2)

where each factor of ϵ means an implicit gradient of a hydrodynamic field. The unifor-
mity parameter ϵ is related to the Knudsen number Kn defined as the ratio of the mean
free path of the particles to a length scale that characterizes the distance over which
gradients in the hydrodynamic variables occur. Note that while the strength of the gra-
dients can be controlled by the initial or the boundary conditions in the case of elastic
collisions, the problem is more complicated for granular fluids since in some cases (e.g.,
steady states such as the simple shear flow (Goldhirsch 2003; Santos et al. 2004)) there
is an intrinsic relation between dissipation and some hydrodynamic gradient. In these
situations the Navier-Stokes approximation (first order in the expansion) only applies
for nearly elastic systems (Goldhirsch 2003). Here, however we consider situations where
the spatial gradients are sufficiently small (low Knudsen number) (Hrenya et al. 2008).
Moreover, in ordering the different level of approximations in the kinetic equation, one
has to characterize the magnitude of the external forces relative to the gradients as well.
The scaling of the forces depends on the conditions of interest. Here, we assume that the
external forces (gravity and drag forces) do not induce any flux in the system and only
modify the form of the transport coefficients. As a consequence, g, β, γ and ξ are taken
to be of zeroth order in gradients.
According to the expansion (5.2) for the distribution function, the Enskog collision

operator and time derivative are also given in the representations

JE = J
(0)
E + ϵJ

(1)
E + · · · , ∂t = ∂

(0)
t + ϵ∂

(1)
t + · · · . (5.3)

The coefficients in the time derivative expansion are identified by a representation of
the fluxes and the collisional cooling rate in the macroscopic balance equations as a
similar series through their definitions as functionals of f . This is the usual CE method
(Chapman & Cowling 1970; Garzó & Santos 2003) for solving kinetic equations. The
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main difference here with respect to previous works (Garzó & Dufty 1999; Brey et al.
1998) is that the reference state f (0) has a time dependence associated with the fluid
phase terms γ and ξ apart from the one associated with the collisional cooling rate that is

not proportional to the gradients. As a consequence, terms from the time derivative ∂
(0)
t

are not zero as expected. In addition, given that collisional dissipation and gradients are
uncoupled, the different approximations f (k) are nonlinear functions of α, regardless of
the applicability of the corresponding hydrodynamic equations truncated at that order.

To summarize, the Chapman-Enskog expansion is carried out up to first order (Navier-
Stokes order), resulting in constitutive equations which are proportional to the first order
spatial derivatives in the hydrodynamic fields. This first order expansion is strictly valid
for small Knudsen number Kn. Because the length scale for variations of the hydrody-
namic fields depends on the local flow field, the assumption of small Kn (also known as
the “small gradient” assumption) may be valid for some flow geometries and invalid for
others. Since our results are presented below in a general form (prior to the application
for any specific flow geometry), assessment of this low Knudsen assumption is not pos-
sible a priori. Nonetheless, it is worth noting that for ordinary fluids, the Navier-Stokes
hydrodynamic equations work well beyond their range of validity expected from a strict
application of their assumptions. The same has also been found to be true for granular
fluids; namely, the range of applicability of the Navier-Stokes description, based on com-
parisons with experimental data, is often much wider than expected (Rericha et al. 2002;
Wildman et al. 2008).

6. Local homogeneous state. Zeroth-order solution

To zeroth-order in ϵ, the Enskog equation (4.1) becomes

∂
(0)
t f (0)− β

m
∆U · ∂f

(0)

∂V
− γ

m

∂

∂V
·Vf (0)− 1

2
ξ

∂2

∂V 2
f (0)+g · ∂f

(0)

∂V
= J

(0)
E [f (0), f (0)], (6.1)

where

J
(0)
E

[
f (0), f (0)

]
≡ χσd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

×
[
α−2f (0)(v′1)f

(0)(v′2)− f (0)(v1)f
(0)(v2)

]
. (6.2)

Here, χ ≡ χ[r, r + σ|n(t)]|n=n(t) is the pair functional evaluated with all density fields
at the local point r. The collision operator (6.2) can be recognized as the Boltzmann
operator for inelastic collisions multiplied by the factor χ. Note that in Eq. (6.1) all
spatial gradients are neglected at this lowest order. Moreover, as discussed before, upon
writing Eq. (6.1) it has been assumed that the gravity field and the external parameters
accounting for the effects of gas-phase are taken to be of zeroth-order in spatial gradients.
The macroscopic balance equations at this order are

∂
(0)
t n = 0, ∂

(0)
t U = − β

m
∆U+ g, (6.3)

∂
(0)
t T = −2T

m
γ +mξ − ζ(0)T, (6.4)
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where ζ(0) is determined by Eq. (4.15) to zeroth order, namely, by using the distribution
f (0). Since f (0) qualifies as a normal solution, then

∂
(0)
t f (0) =

∂f (0)

∂n
∂
(0)
t n+

∂f (0)

∂Ui
∂
(0)
t Ui +

∂f (0)

∂T
∂
(0)
t T

=

(
β

m
∆U− g

)
· ∂f

(0)

∂V
−
(
2γ

m
− m

T
ξ + ζ(0)

)
T
∂f (0)

∂T
, (6.5)

where in the last step we have taken into account that f (0) depends on U through its
dependence on V. Substitution of Eq. (6.5) into Eq. (6.1) yields

−
(

2

m
γ − m

T
ξ + ζ(0)

)
T
∂f (0)

∂T
− γ

m

∂

∂V
·Vf (0) − 1

2
ξ

∂2

∂V 2
f (0) = J

(0)
E [f (0), f (0)]. (6.6)

Since the solution to Eq. (6.6) is isotropic in V, dimensional analysis requires that f (0)

has the scaled form

f (0)(V) = nv−d
0 Ψ

(
V

v0

)
, (6.7)

where Ψ is an unknown function of V/v0, where v0 =
√
2T/m is the thermal speed.

Therefore, according to Eq. (6.7), the temperature dependence of f (0) can occur only
through v0 and the dimensionless velocity V/v0 so that

T
∂f (0)

∂T
= −1

2

∂

∂V
·Vf (0). (6.8)

Taking into account Eqs. (6.7) and (6.8), the Enskog equation (6.6) for the zeroth-order
distribution function becomes finally

1

2

(
ζ(0) − mξ

T

)
∂

∂V
·Vf (0) − 1

2
ξ

∂2

∂V 2
f (0) = J

(0)
E [f (0), f (0)]. (6.9)

Note that Eq. (6.9) is independent of the parameters β and γ. In fact, when ξ = 0,
one recovers the kinetic equation defining the homogeneous cooling state (HCS), whose
solution has been previously worked out by several authors (van Noije & Ernst 1998;
Montanero & Santos 2000; Pöschel & Brilliantov 2006; Santos & Montanero 2009).
In terms of the (scaled) distribution Ψ, Eq. (6.9) can be rewritten as

1

2
(ζ∗ − ξ∗)

∂

∂c
· cΨ− 1

4
ξ∗

∂2

∂c2
Ψ = J∗

E[Ψ,Ψ], (6.10)

where c = V/v0,

ζ∗ =
ℓζ(0)

v0
, ξ∗ =

mξℓ

Tv0
, J∗

E =
ℓ

n
vd−1
0 J

(0)
E , (6.11)

and ℓ = 1/(nσd−1) is the (local) mean free path for hard spheres. In the case of elastic
particles (α = 1), ζ∗ = 0 and the solution of Eq. (6.10) is a Maxwellian distribution Koch
(1990):

Ψ(c) = π−d/2e−c2 . (6.12)

However, if the particles collide inelastically (α < 1), the exact form of Ψ(c) is not
known, even in the dry granular case (ξ∗ = 0). However, a very good approximation
can be obtained from an expansion in Sonine polynomials (van Noije & Ernst 1998). In
particular, since the distribution function is isotropic the zeroth order pressure tensor
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and heat flux are found from Eqs. (4.11)–(4.13) to be

P
(0)
ij = p δij , q(0) = 0, (6.13)

where the hydrostatic pressure p is

p = nT
[
1 + 2d−2(1 + α)χϕ

]
, (6.14)

where

ϕ =
πd/2

2d−1dΓ
(
d
2

)nσd (6.15)

is the solid volume fraction. Note that the presence of the gas phase does not enter the
constitutive relation for pressure.
The deviation of Ψ(c) from its Maxwellian form is measured through the kurtosis or

fourth-cumulant (van Noije & Ernst 1998)

a2 =
4

d(d+ 2)
⟨c4⟩ − 1, (6.16)

where

⟨ck⟩ =
∫

dc ckΨ(c). (6.17)

In order to determine a2, we multiply both sides of Eq. (6.10) by c4 and integrate over
velocity. The result is

d(d+ 2)

2
[ζ∗(1 + a2)− ξ∗a2] = µ4, (6.18)

where

µk = −
∫

dc ck J∗
E[Ψ,Ψ]. (6.19)

Upon writing Eq. (6.18) use has been made of the partial result∫
dc cp

∂2Ψ

∂c2
= p(p+ d− 2)⟨cp−2⟩ (6.20)

with p = 4 and ⟨c2⟩ = d
2 .

Equation (6.18) is still exact. To get an approximate expression for the quantities
ζ∗ = (2/d)µ2 and µ4, we consider the first Sonine approximation for Ψ, then we insert
this expansion into Eq. (6.19) and neglects terms nonlinear in a2. The results are

µ2 → µ
(0)
2 + µ

(1)
2 a2, µ4 → µ

(0)
4 + µ

(1)
4 a2, (6.21)

where (van Noije & Ernst 1998)

µ
(0)
2 =

π(d−1)/2

√
2Γ

(
d
2

)χ(1− α2), µ
(1)
2 =

3

16
µ
(0)
2 , (6.22)

µ
(0)
4 =

(
d+

3

2
+ α2

)
µ
(0)
2 , (6.23)

µ
(1)
4 =

[
3

32
(10d+ 39 + 10α2) +

d− 1

1− α

]
µ
(0)
2 , (6.24)

and in Eq. (6.22), Γ refers to Gamma function. With the use of the approximations (6.21)
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and retaining only linear terms in a2, the solution to Eq. (6.18) is

a2 = − µ
(0)
4 − (d+ 2)µ

(0)
2

µ
(1)
4 − (d+ 2)

(
19
16µ

(0)
2 − d

2ξ
∗
) . (6.25)

In terms of a2, the zeroth-order expression ζ(0) for the collisional cooling rate can be
written as

ζ(0) =
2

d

π(d−1)/2

Γ
(
d
2

) (1− α2)χ

(
1 +

3

16
a2

)
nσd−1

√
T

m
. (6.26)

Note that the effects of the interstitial gas on the zeroth-order collisional cooling rate
ζ(0) is only through the dependence of the kurtosis a2 on ξ∗ (Eq. (6.25)).

7. First order solution. Navier-Stokes transport coefficients

The analysis to first order in the expansion parameter is similar to the one worked out
by Garzó & Dufty (1999) and Lutsko (2005) in the dry granular case. We only display
here the final expressions for the fluxes and the collisional cooling rate with some details
being given in the Appendices A and B. The form of the first-order velocity distribution
function f (1) is given by

f (1) = A (V) · ∇ lnT +B (V) · ∇ lnn

+Cij (V)
1

2

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
+D (V)∇ ·U, (7.1)

where the quantities A (V), B (V), Cij (V) and D (V) are the solutions of the linear
integral equations (A 18)–(A 21), respectively. With the distribution function f (1) deter-
mined by Eq. (7.1), the pressure tensor, the heat flux and the collisional cooling rate
can be calculated to first order in the spatial gradients. It is worthwhile to note that the
spatial dependence of ξ with respect to |∆U| (see below Eq. (8.2)) has been neglected in
these calculations (unlike the spatial dependence with respect to the density n and the
granular temperature T ). This assumption traces to the applications which motivate this
work. Namely, in circulating fluidized beds (CFBs), the solids concentration and gran-
ular temperature vary considerably in space, whereas the relative velocity ∆U remains
relatively constant (∼ terminal velocity of single particle). Accordingly, ∆U is treated
as a constant here, which also has the benefit of greatly simplifying the calculations. It
is also important to remark that our results have been derived systematically from the
inelastic Enskog equation by the CE procedure and consequently, there is no a priori
any limitation on the degree of inelasticity. Thus, the results apply to a wide range of
values of the coefficient of restitution. Moreover, since the transport coefficients and the
collisional cooling rate are given in terms of the solutions of the coupled linear integral
equations (A 18)–(A 21), for practical purposes these integral equations have been solved
by truncated expansions in Sonine polynomials.

The forms of the collisional contributions to the momentum and heat fluxes are exactly
the same as the ones obtained in the absence of the gas phase (Garzó & Dufty 1999;
Lutsko 2005) except that a2 depends on ξ∗. Thus, we will focus here our attention in
the evaluation of the kinetic parts of the transport coefficients and the collisional cooling
rate. Some technical details of this calculation are provided in the Appendix B. Let us
consider each flux separately.
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7.1. Pressure tensor

To first order, the pressure tensor is given by

P
(1)
ij = −η

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
− λδij∇ ·U, (7.2)

where η is the shear viscosity and λ is the bulk viscosity. While the shear viscosity has
kinetic and collisional contributions, the bulk viscosity has only a collisional contribution.
The shear viscosity is

η = ηk + ηc. (7.3)

The collisional contribution ηc to the shear viscosity η is given by (Garzó & Dufty 1999;
Lutsko 2005)

ηc =
2d−1

d+ 2
ϕχ(1 + α)ηk +

d

d+ 2
λ, (7.4)

and the bulk viscosity is

λ =
22d+1

π(d+ 2)
ϕ2χ(1 + α)

(
1− a2

16

)
η0. (7.5)

Here,

η0 =
d+ 2

8

Γ
(
d
2

)
π(d−1)/2

σ1−d
√
mT (7.6)

is the low density value of the shear viscosity in the elastic limit. The kinetic part ηk of
the shear viscosity is

ηk =
nT

νη − 1
2

(
ζ(0) − m

T ξ − 2
mγ

) [1− 2d−2

d+ 2
(1 + α)(1− 3α)ϕχ

]
, (7.7)

where the collision frequency νη is (Garzó et al. 2007c)

νη =
3ν0
4d

χ

(
1− α+

2

3
d

)
(1 + α)

(
1 +

7

16
a2

)
. (7.8)

Here, ν0 = nT/η0. The shear viscosity can be finally written as

η = ηk

[
1 +

2d−1

d+ 2
ϕχ(1 + α)

]
+

d

d+ 2
λ. (7.9)

Thus, in addition to the presence of a2 (which depends on ξ) in Eq. (7.5) for the bulk
viscosity, gas-phase effects appear explicitly on the kinetic part ηk of the shear viscosity
via the appearance of γ and ξ in Eq. (7.7) and implicitly via the appearance of νη, which
also depends on a2 (see Eq. (7.8)).

7.2. Heat Flux

The constitutive form for the heat flux in the Navier-Stokes approximation is

q(1) = −κ∇T − µ∇n, (7.10)

where κ is the thermal conductivity and µ is the Dufour coefficient, which is not present
in the granular case (no gas phase) when particles collide elastically (α = 1).
The thermal conductivity κ is given by

κ = κk + κc. (7.11)
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The collisional contribution κc to the thermal conductivity κ is (Garzó & Dufty 1999;
Lutsko 2005)

κc = 3
2d−2

d+ 2
ϕχ(1 + α)κk +

22d+1(d− 1)

(d+ 2)2π
ϕ2χ(1 + α)

(
1 +

7

16
a2

)
κ0, (7.12)

where

κ0 =
d(d+ 2)

2(d− 1)

η0
m

(7.13)

is the thermal conductivity coefficient of an elastic dilute gas. The expression of the
kinetic part κk is

κk =
d− 1

d
κ0ν0

(
νκ +

1

2

mξ

T
− 2ζ(0) − 2T

m
γT +mξT

)−1

×
{
1 + 2a2 + 3

2d−3

d+ 2
ϕχ(1 + α)2 [2α− 1 + a2(1 + α)]

}
, (7.14)

where

γT ≡ ∂γ

∂T
, ξT ≡ ∂ξ

∂T
, (7.15)

and the collision frequency νκ is given by (Garzó et al. 2007c)

νκ = ν0
1 + α

d
χ

[
d− 1

2
+

3

16
(d+ 8)(1− α) +

296 + 217d− 3(160 + 11d)α

256
a2

]
. (7.16)

The (combined) thermal conductivity κ can be finally written as

κ = κk

[
1 + 3

2d−2

d+ 2
ϕχ(1 + α)

]
+

22d+1(d− 1)

(d+ 2)2π
ϕ2χ(1 + α)

(
1 +

7

16
a2

)
κ0. (7.17)

The Dufour coefficient is given by

µ = µk + µc, (7.18)

where the expression for the collisional contribution µc is (Garzó & Dufty 1999; Lutsko
2005)

µc = 3
2d−2

d+ 2
ϕχ(1 + α)µk. (7.19)

The kinetic contribution µk is given by

µk =
κ0ν0T

n

[
νκ − 3

2

(
ζ(0) − mξ

T

)]−1 {
κk

κ0ν0

[
2n

m
γn − ρ

T
ξn + ζ(0) (1 + ϕ∂ϕ lnχ)

]
+
d− 1

d
a2 + 3

2d−2(d− 1)

d(d+ 2)
ϕχ(1 + α)

(
1 +

1

2
ϕ∂ϕ lnχ

)
×
[
α(α− 1) +

a2
6
(10 + 2d− 3α+ 3α2)

]}
, (7.20)

where

γn ≡ ∂γ

∂n
, ξn ≡ ∂ξ

∂n
. (7.21)

The (combined) Dufour coefficient µ can be written as

µ = µk

[
1 + 3

2d−2

d+ 2
ϕχ(1 + α)

]
. (7.22)
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In the granular case (no gas phase and so, β = γ = ξ = 0), the Dufour coefficient
vanishes for elastic collisions (α = 1). On the other hand, Eq. (7.22) shows that µ ̸= 0
when the gas phase is accounted for even for elastic collisions. In this case (α = 1), a2 = 0
and the Dufour coefficient µ is given by Eq. (7.22) with

µk =
κkT

n

(
νκ +

3

2

mξ

T

)−1 (
2n

m
γn − ρ

T
ξn

)
, (7.23)

where κk is given by Eq. (7.14) with α = 1, and a2 = ζ(0) = 0.
Again, similar to the pressure tensor, gas-phase effects appear implicitly in the ther-

mal conductivity and Dufour coefficients via the appearance of the cumulant a2 (which
depends on ξ) in Eqs. (7.14), (7.17), and (7.20). Furthermore, such effects are explicit
in the kinetic contributions to the thermal conductivity and the Dufour coefficient (see
Eqs. (7.14) and (7.20)) through the terms containing γ and ξ.

7.3. Collisional cooling rate

The collisional cooling rate ζ is given by

ζ = ζ(0) + ζU∇ ·U, (7.24)

where ζ(0) is defined in Eq. (6.26). At first order in gradients, the proportionality constant
ζU is a new transport coefficient for granular fluids. This coefficient is given by

ζU = ζ10 + ζ11, (7.25)

where

ζ10 = −3
2d−2

d
χϕ(1− α2), (7.26)

ζ11 =
27(d+ 2)2 2d−8

32d2
ϕχ2(1− α2)

(
1 + 3a2

128

) [
ω

2(d+2) − (1 + α)ν0
(
1
3 − α

)
a2

2

]
νγ − γ

m − 3mξ
2T + 3

2ζ
(0)

. (7.27)

In the above expression, the collision frequencies ω and νγ are given by (Garzó & Dufty
1999; Lutsko 2005)

ω = (1+α)ν0

{
(1− α2)(5α− 1)− a2

6

[
15α3 − 3α2 + 3(4d+ 15)α− (20d+ 1)

]}
, (7.28)

νγ = −1 + α

192
χν0

[
30α3 − 30α2 + (105 + 24d)α− 56d− 73

]
. (7.29)

The presence of the gas phase impacts ζ11 via the explicit appearance of γ and ξ (see
Eq. (7.27)) as well as an implicit dependency via the cumulant a2.

8. Results and Discussion

8.1. Drag model: Low mean flow Reynolds numbers

The expressions derived in §6 and §7 for the (reduced) transport coefficients and the
collisional cooling rate depend on the coefficient of restitution α, the solid volume fraction
ϕ along with the external parameters γ and ξ and their derivatives with respect to the
density n and the granular temperature T . Thus, to show the explicit forms of η, λ, κ, µ
and ζU , one has to provide relations for γ and ξ. As described in §4, these quantities are
derived from the Stokes flow closures for the source and dissipation of granular energy
given by Koch (1990) and Koch & Sangani (1999). Recall that attention here is limited
to low mean flow Reynolds numbers in order to compare with previous analytical results
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(Koch 1990; Koch & Sangani 1999) and to assess the impact of the gas phase on the
constitutive relations, the latter of which was neglected in the analytical treatment.
We consider here the physical case of hard spheres (d = 3). For the case of low mean

flow Reynolds numbers, the expressions of γ and ξ are given by

γ =
m

τ
Rdiss(ϕ), (8.1)

ξ =
1

6
√
π

σ|∆U|2

τ2
√

T
m

S∗(ϕ), (8.2)

where τ = m/(3πµgσ) is the characteristic time scale over which the velocity of a particle
of mass m and diameter σ relaxes due to viscous forces. Here, µg is the gas viscosity.
In the case of dilute suspensions (0 6 ϕ 6 0.1), the expressions for the functions

Rdiss(ϕ) and S∗(ϕ) are (Koch 1990)

Rdiss(ϕ) = 1 + 3

√
ϕ

2
, S∗(ϕ) = 1. (8.3)

For moderately dense suspensions (0.1 6 ϕ 6 0.4), the functions Rdiss(ϕ) and S∗(ϕ) can
be well approximated by (Sangani et al. 1996; Koch & Sangani 1999)

Rdiss(ϕ) = 1 + 3

√
ϕ

2
+

135

64
ϕ lnϕ

+11.26ϕ
(
1− 5.1ϕ+ 16.57ϕ2 − 21.77ϕ3

)
− ϕχ(ϕ) ln ϵm, (8.4)

S∗(ϕ) =
R2

drag

χ(ϕ)
(
1 + 3.5

√
ϕ+ 5.9ϕ

) , (8.5)

where the function Rdrag is given by

Rdrag(ϕ) =
1 + 3

√
ϕ
2 + 135

64 ϕ lnϕ+ 17.14ϕ

1 + 0.681ϕ− 8.48ϕ2 + 8.16ϕ3
. (8.6)

In Eq. (8.4), ϵmσ can be interpreted as a length scale characterizing the importance of
non-continuum effects on the lubrication force between two smooth particles at close
contact. Typical values of the factor ϵm are in the range 0.01–0.05. However, given that
this term only contributes to Rdiss(ϕ) through a weak logarithmic factor, its explicit
value does not play a significant role in the final results. Here, we take the typical value
ϵm = 0.01.
According to Eqs. (8.1) and (8.2), the derivatives of γ and ξ with respect to n and T

are given by

nγn = γϕ∂ϕ lnRdiss(ϕ), γT = 0, (8.7)

TξT = −1

2
ξ, nξn = ξϕ∂ϕ lnS

∗(ϕ). (8.8)

In particular, nξn = 0 for a dilute suspension since S∗(ϕ) = 1. To make a connection
with the ranges of dimensionless parameters which are of practical relevance for the
gas-solid flows, it is convenient to express the reduced parameters γ∗ ≡ (γℓ)/(mv0) and
ξ∗ ≡ (mξℓ)/(Tv0) in terms of the mean flow Reynolds number Rem and the Reynolds
number associated with particle velocity fluctuations ReT.
The expressions of γ∗ and ξ∗ as functions of Rem and ReT can be easily obtained when
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Figure 5. (color online) Fourth cumulant a2 versus α for hard spheres with ϕ=0.1, ρs/ρg = 1500,
Rem = 0.5 (Stm = 93), and ReT = 2 (StT = 330). The dashed line corresponds to the results
obtained in the granular case (no gas phase).

one takes into account Eqs. (3.1), (3.2), (8.1), and (8.2). The result is

γ∗ =
3π√
2ϕ

ρg
ρs

Rdiss(ϕ)

ReT
, (8.9)

ξ∗ =
9

2

√
2π

(
ρg
ρs

)2
Re2m

ϕ(1− ϕ)2Re4T
S∗(ϕ). (8.10)

8.2. Impact of gas phase on the constitutive relations

To assess the influence of the gas phase on the constitutive relations derived in §5 and §6
for the continuum equations given by Eqs. (4.7)–(4.9), the zeroth and first-order contri-
bution to these relations (ζ(0), ζU , η, λ, κ, and µ) have been examined for spheres (d=3)
over a wide dimensionless parameter space: {ϕ, α, ρs/ρg,Rem,ReT}. Here, we consider a
range of dimensionless parameters relevant to operate in a CFB: ϕ = 0−0.5, α = 0.5−1,
ρs/ρg = 800− 2500, Rem = 0.1− 1 (Stokes flow), and ReT = 0.5− 5.
It is worthwhile to note that the results presented below are not specific to any one

flow system (e.g., simple shear flow), but instead are applicable generally. In other words,
all the transport coefficients are displayed as a function of the full set of dimensionless
parameters, which depend on both material properties (particle mass, radius, . . . ) and
hydrodynamic variables (granular temperature, mean relative velocity between gas and
solids, . . . ) alike. Finally, since a primary contribution of this paper is to assess the effect
of the gas phase on transport properties, the transport coefficients plotted below are non-
dimensionalized with respect to their “dry” values (those obtained when the interstitial
fluid is neglected).
Recall that the gas-phase effects appear in the collisional cooling rate and transport

coefficients explicitly via the appearance of γ and ξ and/or implicitly via the appearance
of the kurtosis a2, which depends on ξ via Eq. (6.25). Hence, it is worthwhile to first
consider the effect of the gas phase on a2, as is displayed in figure 5 for the representative
case of ϕ = 0.1, Rem = 0.5, ReT = 2, and ρs/ρg = 1500. It is observed that the gas phase
plays a negligible role on the kurtosis a2 since both curves (granular case and gas-solid
suspension) are practically indistinguishable. Accordingly, it follows that the quantities
that only have an implicit dependence on the gas phase through the appearance of a2
also display a negligible role of the gas phase. These quantities include the zeroth-order
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Figure 6. Plot of the ratio η/ηdry versus the volume fraction ϕ for a dilute (panel (a)) and a
moderately dense (panel (b)) suspension for ρs/ρg = 1000, Rem = 0.1, ReT = 0.5 (StT = 56)
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Figure 7. Plot of the ratio η/ηdry for ϕ = 0.1 and three different values of the coefficient of
restitution α: From the bottom to the top, α=0.5, 0.7 and 0.9. In the panel (a) η/ηdry is plotted
versus ρs/ρg for Rem = 0.1 and ReT = 0.5, in the panel (b) η/ηdry is plotted versus Rem for
ρs/ρg = 1000 and ReT = 0.5 (StT = 56) and in the panel (c) η/ηdry is plotted versus ReT for
ρs/ρg = 1000 and Rem = 0.1 (Stm = 12).

collisional cooling rate ζ(0) (Eq. (6.26)) and the bulk viscosity (Eq. (7.5)), which are
not shown for the sake of brevity. It is also worthwhile to note that although the first-
order contribution to the collisional cooling rate ζU (Eqs. (7.25)–(7.27)) and the thermal
conductivity κ (Eqs. (7.14) and (7.17)) also contain an explicit dependency on γ and ξ,
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Figure 8. Plot of the ratio µ/µdry versus the volume fraction ϕ for a dilute (panel (a)) and a
moderately dense (panel (b)) suspension for ρs/ρg = 1000, Rem = 0.1, ReT = 0.5 (StT = 56)
and three different values of the coefficient of restitution α: From the bottom to the top, α=0.5,
0.7 and 0.9.

the gas phase shows a similarly negligible impact (< 0.1%) over the range of parameters
examined. Again, these plots are not shown for the sake of brevity.
Thus, of the six constitutive quantities derived, the two for which the gas phase does

exert a considerable influence are the shear viscosity η and the Dufour coefficient µ.
Henceforth, the subscript dry refers to the value of the corresponding quantity in the
absence of gas phase (i.e., when β = γ = ξ = 0). The shear viscosity is displayed in
figures 6 and 7. Here, the shear viscosity is shown as a function of the solid fraction ϕ
for both the dilute and dense expressions (figures 6a and 6b, respectively), the density
ratio ρs/ρg (figure 7a), the mean Reynolds number Rem (figure 7b), and the Reynolds
number based on particle velocity fluctuations ReT (figure 7c). For each figure, only the
quantity displayed along the abscissa is varied while all others are kept constant. Note
also from figure 6 that the dilute- and dense-phase expressions for η/ηdry are roughly
similar in value at the boundary of ϕ = 0.1 used between the two sets of expressions.
Regarding the dependency of shear viscosity on concentration (figures 6a and 6b), it

is observed that the dampening influence of the gas phase increases (η/ηdry decreases
further below unity) as the system becomes more dilute (ϕ decreases), with this effect
being stronger at stronger dissipation levels (lower α). The physical explanation for this
behavior traces to the increased mean free path of the particles in dilute systems, over
which the gas phase serves to buffer the kinetic transport of particles. From a mathe-
matical perspective, recall that the collisional contributions to the transport coefficients
were only modified by the presence of the gas phase via the appearance of a2, which is
negligibly changed by the inclusion of a gas phase (see figure 5). On the other hand, the
kinetic contribution to the shear viscosity, which dominates at more dilute conditions,
has an additional dependence on the gas phase via the explicit appearance of γ and ξ
(see Eq. (7.7)). It is also worthwhile to point out that the shear viscosity η → 0 in the
dilute limit, as previously reported by Tsao & Koch (1995) and Sangani et al. (1996).
The same is not true for the granular counterpart ηdry, which is well-known to take on
a finite value in the dilute limit. Again, this behavior can be traced to the buffering ef-
fect (viscous forces) of the interstitial gas which serves to continually reduce the random
component of particle motion in the dilute limit (gas-phase sink of granular temperature
much larger than gas-phase source).
Regarding the dependency of the shear viscosity on the other system parameters,

figure 7a demonstrates an increased influence of the gas phase on shear viscosity as ρs/ρg
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Figure 9. Plot of the ratio µ/µdry for ϕ = 0.2 and three different values of the coefficient of
restitution α: From the bottom to the top, α=0.5, 0.7 and 0.9. In the panel (a) µ/µdry is plotted
versus ρs/ρg for Rem = 0.1 and ReT = 0.5, in the panel (b) η/ηdry is plotted versus Rem for
ρs/ρg = 1000 and ReT = 0.5 (StT = 56) and in the panel (c) µ/µdry is plotted versus ReT for
ρs/ρg = 1000 and Rem = 0.1 (Stm = 14).

decreases, which can be explained by the decreased role of particle inertia relative to gas-
phase viscous forces. As displayed in figure 7b, however, the shear viscosity is essentially
independent of Rem over the small range of (low) Rem investigated here. However, as
illustrated in figure 7c, the gas phase displays a larger impact on the shear viscosity for
lower ReT due to the decreased role of random particle motion. At the other extreme
of higher ReT, the granular limit (η/ηdry → 1) is approached, as expected. Finally, for
all of these system parameters (figures 7a–7c), the gas-phase effect on shear viscosity is
again more pronounced for higher dissipation levels (lower α).
As discussed previously, the Reynolds numbers Rem and ReT can be converted to

Stokes numbers Stm and StT via Eqs. (3.5) and (3.6), respectively. In figures 7, the rele-
vant Stokes numbers both cover the range of O(10)-O(100), though results are observed
to be more sensitive to the value of StT than Stm (i.e., figure 7c compared to figure 7b). In
figure 7c, the x-axis corresponds to the value of StT ∼ 80−500. At the higher StT (higher
ReT of figure 7c), the shear viscosity results approach those of the dry granular limit,
as expected (fluid phase becomes negligible). However, the differences are non-negligible
for StT of O(10) (lower ReT in figure 7c). This observation is particularly true for more
dilute systems, as illustrated in figure 6a. In this figure, the Stokes number is constant
at StT ∼ 60, yet the shear viscosity η varies greatly from its dry counterpart ηdry. For
example, η is about 40% of ηdry at the volume fraction ϕ = 0.01. Since the core of a
CFB riser is often characterized by solid volume fractions on the order of a few percent,
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Figure 11. Plot of the ratios η/ηdry (panel (a)) and κ/κdry (panel (b)) as a function of the
solid fraction ϕ for Rem = 0.1, ReT = 0.5 (StT = 56) and different values of the coefficient of
restitution α. The solid lines are the results derived here while the dashed lines are based on
the model used by Agrawal et al. (2001).

gas-phase modifications to the shear viscosity are not negligible for practical systems,
even at finite St.
Now switching to the Dufour coefficient µ, the influence of the gas phase is presented

in figures 8 and 9 over the similar ranges of system parameters. However, it is important
to recall that µ = 0 in the granular case when α = 1. When α ̸= 1, µdry ̸= 0 but
its magnitude is small for weak dissipation (for instance, µdry ≃ 0.207 for α = 0.9 and
ϕ = 0.2). In stark contrast to the shear viscosity (figures 6 and 7), the gas phase serves to
increase the Dufour coefficient relative to its dry counterpart (i.e., µ/µdry > 1), and these
effects are more noticeable at lower dissipation levels (higher α). Nonetheless, similar to
the shear viscosity, the influence of the gas phase is greater at more dilute conditions
since the kinetic contributions dominate over their collisional counterparts (figures 8a
and 8b). Also similar is the increased role of the gas phase for lower density ratios due
to the decreased role of particle inertia (figure 9a). Finally, the impact of ReT and Rem
on the Dufour coefficient is analogous to that of the shear viscosity, where the influence
of the gas phase is relatively independent of Rem (see figure 9b) over the range of low
Rem considered, but does depend on ReT (see figure 9c).
The behavior of the Dufour coefficient in the elastic limit (α = 1) is further explored in
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figure 10. Recall for the dry granular case (no gas phase), µ = 0 at α = 1, so the discovery
of a non-zero value for the gas-solid suspension may appear surprising. However, the
appearance of a non-zero Dufour coefficient is also observed in granular mixtures (i.e.,
more than one solid species) at the elastic limit (see, for example, (Garzó et al. 2007a,b)),
so the gas phase plays an analogous role to an additional solid species in this regard. As
illustrated in figure 10, µ increases with solid fraction but decreases with ReT; note
that this trend cannot be compared with that of figure 8 directly since the latter is
non-dimensionalized with the dry case and figure 10 is not to avoid division by zero.
Although the previous analytical works of Koch and co-workers in the Stokes flow limit

(Koch 1990; Sangani et al. 1996; Koch & Sangani 1999) ignore the impact of the gas phase
on the solid-phase constitutive relations, other groups have included such effects (Ma &
Ahmadi 1988; Balzer et al. 1995; Lun & Savage 2003). Expressions including such effects
for the shear viscosity and thermal conductivity are given by Agrawal et al. (2001), and
are compared with those derived here in figures 11a and 11b, respectively. For the shear
viscosity (figure 11a), the qualitative nature of the gas-phase influence is similar in that
it is more apparent at dilute conditions, though the expression derived here shows a
stronger gas-phase influence. On the other hand, for the case of the thermal conductivity
(figure 11b), the expression derived here displays essentially no impact from the gas phase,
whereas previous expressions show a dampening of the thermal conductivity relative to
the (dry) granular case. It is worth noting, however, that this comparison is not apples-
to-apples due to two key differences between the previous treatments and the current
one. Namely, as described in §1, the previous treatments have incorporated the effects of
gas-phase turbulence and have used a form of the instantaneous drag force that mimics
the form of the mean force, neither of which is implemented in our expressions.
Finally, our predictions for the shear viscosity and the steady granular temperature are

compared in figures 12 and 13, respectively, with the numerical simulations performed
by Sangani et al. (1996). The shear viscosity and the (steady) granular temperature were
obtained from simulations in the simple shear flow state, and thus Rem = 0. Consistent
with this work (Sangani et al. 1996), the results here are plotted against a Stokes number
Stshear based on the shear rate γ̇ ≡ ∂Ux/∂y. This Stokes number is defined as (Sangani
et al. 1996)

Stshear =
mγ̇

3πσµg
. (8.11)

The reduced shear viscosity µs is defined as

µs =
4η

ρsϕγ̇σ2
, (8.12)

while the (steady) granular temperature θ is

θ =
4T

mσ2γ̇2
. (8.13)

In the simple shear flow state, the granular temperature T is determined by applying the
steady state condition to the balance equation of the temperature. The shear viscosity
µs and the square root of temperature

√
θ are plotted in figures 12 and 13, respectively,

as functions of Stshear/Rdiss for hard spheres with α = 1 (Note that the reduced shear
viscosity µs is also defined differently than shown in Sangani et al. (1996); the results
presented here correct the error contained in the original publication (Koch 2012)). It
is apparent that our theoretical predictions slightly overestimate the shear viscosity and
granular temperature for dilute conditions (ϕ = 0.01 in figures 12a and 13a) while exhibit-
ing close agreement at more moderate volume fractions (ϕ = 0.1 in figures 12b 13b). This
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and the circles are the simulation results obtained by Sangani et al. (1996).

observation can be explained via the assumption of low Knudsen number Kn used in our
derivation. In particular, previous work in granular systems (no fluid phase) has shown
that the simple shear flow state contains higher-order effects (beyond Navier-Stokes or-
der; see Santos et al. (2004)) and that such effects become more important in dilute flows
(Hrenya et al. 2008). Nonetheless, the agreement here is encouraging and bodes well for
the extension of the PR–DNS-based acceleration model used here to higher Rem, and its
subsequent incorporation into Navier-Stokes-order hydrodynamics, especially consider-
ing the complexities associated with deriving higher-order hydrodynamics and associated
boundary conditions.

9. Summary

In this work, a rigorous incorporation of the gas phase into the starting kinetic (En-
skog) equation has been demonstrated via an instantaneous model for the drag force. A
unique aspect of this work is the use of a Langevin model for the instantaneous gas-phase
force on a particle. The coefficients of the Langevin model are related to the dissipation
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Figure 14. Plots showing the verification of the Langevin model. Figure 14(a) compares the
particle velocity autocorrelation function extracted from PR–DNS of freely evolving suspension
(volume fraction of 0.2, mean flow Reynolds number 20 and solid to fluid density ratio of
100) with the exponential decay predicted by the Langevin model. Figure 14(b) is the same as
Fig. 14(a) for a suspension with solid to fluid density of 10.

and source of granular energy and can be obtained from analytical expressions (for Stokes
flow and ϕ < 0.1 (Koch 1990)) or from simulations (multipole expansions for Stokes flow
and ϕ > 0.1 (Koch & Sangani 1999)) or from PR–DNS (for higher Reynolds numbers).
For proof-of-concept purposes, attention here is limited to low Reynolds number in order
to allow for direct comparisons with previous analytical treatments. It is found that the
additional terms appearing in the balance equations due to the presence of the gas phase
are the same regardless of treatment. Furthermore, the Chapman-Enskog method is used
to derive Navier-Stokes order constitutive relations for balance equations. The results
indicate a non-negligible influence of the gas phase on the shear viscosity and the Dufour
coefficient, whereas such effects had been ignored in previous analytical treatments for
Stokes flow. Specifically, the presence of the gas phase lowers the shear viscosity and
increases the Dufour coefficient relative to the granular (no gas phase) case, with the
degree of influence larger in more dilute systems. This non-negligible influence persists
even for finite Stokes number of O(10). Moreover, the shear viscosity in gas-solid suspen-
sions is found to approach to zero in the dilute limit (consistent with previous findings of
Tsao & Koch (1995) and Sangani et al. (1996) for simple shear flow), unlike its granular
counterpart which takes on a finite value in the same limit. Also, the Dufour coefficient
in gas-solid systems is found to be non-zero in the elastic limit, which is not the case for
(dry) granular systems but is the case for granular mixtures (i.e., more than one solid
species).
The Langevin model for the instantaneous gas-solid force is applicable to a much

wider parameter space than that explored here, including higher Reynolds numbers,
polydisperse systems, etc. For instance figure 14 shows that the decay of the particle
velocity autocorrelation function ρ (s) (cf. Eq. 3.7) computed from PR–DNS of freely
evolving gas–solid suspension at a mean flow Reynolds number of 20 matches with the
exponential decay predicted by the Langevin equation. Therefore, fluid–solid force models
of the form given by equation 2.1 can be extended seamlessly to gas–solid systems at
higher Reynolds numbers. The model coefficients for such systems are attainable via PR–
DNS, which are not limited to a narrow parameter space as is their analytical counterpart.
Such work is expected to be important for a wide range of practical applications and
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physical phenomenon, such as systems in which the interstitial gas has been shown to
have an impact on the stability of the homogeneous state (Koch 1990; Garzó 2005) or
on species segregation (Möbius et al. 2001; Yan et al. 2003; Naylor et al. 2003; Sánchez
et al. 2004; Möbius et al. 2005; Wylie et al. 2008; Zeilstra et al. 2008; Idler et al. 2009;
Clement et al. 2010).
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Appendix A. Chapman-Enskog method

The velocity distribution function f (1) obeys the kinetic equation(
∂
(0)
t + L

)
f (1) −

(
β

m
∆U− g

)
· ∂f

(1)

∂V
− γ

m

∂

∂V
·Vf (1) − 1

2
ξ

∂2

∂V 2
f (1)

= −
(
∂
(1)
t + v · ∇

)
f (0) − J

(1)
E [f ]. (A 1)

Here, J
(1)
E [f ] means the first order contribution to the expansion of the Enskog collision

operator and L is the linear operator

Lf (1) = −
(
J
(0)
E [f (0), f (1)] + J

(0)
E [f (1), f (0)]

)
. (A 2)

The macroscopic balance equations to first order in the gradients are

D
(1)
t n = −n∇ ·U, D

(1)
t Ui = −(mn)−1∇ip, D

(1)
t T = − 2p

dn
∇ ·U− ζ(1)T, (A 3)

where D
(1)
t ≡ ∂

(1)
t +U · ∇. Use of Eqs. (A 3) in (A 1) and taking into account the form

of J
(1)
E [f ] obtained by Garzó & Dufty (1999) for a dry granular gas, one gets(

∂
(0)
t + L

)
f (1) −

(
β

m
∆U− g

)
· ∂f

(1)

∂V
− γ

m

∂

∂V
·Vf (1) − 1

2
ξ

∂2

∂V 2
f (1)

= A · ∇ lnT +B · ∇ lnn+ Cij
1

2

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
+D∇ ·U, (A 4)

where the expressions of A, B, Cij , and D are the same as those obtained by Garzó &
Dufty (1999). They are given by

Ai (V) =
1

2
Vi∇V ·Vf (0) − p

ρ

∂

∂Vi
f (0) +

1

2
Ki

[
∇V ·

(
Vf (0)

)]
, (A 5)

Bi (V) = −Vif
(0) − p

ρ

(
1 + ϕ

∂

∂ϕ
ln p∗

)
∂

∂Vi
f (0))−

(
1 +

1

2
ϕ

∂

∂ϕ
lnχ

)
Ki

[
f (0)

]
, (A 6)

Cij (V) = Vi
∂

∂Vj
f (0) +Ki

[
∂

∂Vj
f (0)

]
, (A 7)

D =
1

d
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(
V · f (0)

)
− 1

2

(
ζU +

2

d
p∗
)
∇V ·

(
Vf (0)

)
+

1

d
Ki

[
∂Vif

(0)
]
. (A 8)
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Here, ∇V ≡ ∂/∂V,

p∗ ≡ p

nT
= 1 + 2d−2(1 + α)χϕ, (A 9)

ϕ is defined by Eq. (6.15), ζU is defined by Eqs. (7.24) and (7.25) and Ki is the operator

Ki[X] = σdχ

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)σ̂i

[
α−2f (0)(v′′

1 )X(v′′
2 ) + f (0)(v1)X(v2)

]
,

(A 10)
where v′′

1 = v1 − 1
2 (1 + α−1)(σ̂ · g12)σ̂ and v′′

2 = v2 +
1
2 (1 + α−1)(σ̂ · g12)σ̂.

The solution to Eq. (A 4) can be written in the form (7.1). The unknown functions of
the peculiar velocity, A, B, Cij , and D appearing in f (1) are determined by solving Eq.
(A 4). By dimensional analysis, A (V) = v−d

0 ℓ1−dA∗ (V∗), B (V) = v−d
0 ℓ1−dB∗ (V∗),

Cij (V) = v
−(d+1)
0 ℓ1−dC∗

ij (V
∗), and D (V) = v

−(d+1)
0 ℓ1−dD∗ (V∗), where ℓ = 1/nσd−1 is

the mean free path for hard spheres and A∗ (V∗), B∗ (V∗), C∗
ij (V

∗), and D∗
i (V

∗) are

dimensionless functions of the reduced velocity V∗ = V/v0, v0 =
√
2T/m being the

thermal speed. Consequently,

∂
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(
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, (A 11)

∂
(0)
t B (V) = (∂

(0)
t T )∂TB (V) = − 1

2T
∇V · (VB (V)) (∂

(0)
t T )

= − 1

2T
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(
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, (A 12)

∂
(0)
t Cij (V) = (∂

(0)
t T )∂TCij (V) = − 1
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= − 1
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)
, (A 13)
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(0)
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m
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)
. (A 14)

In addition,

∂
(0)
t ∇ lnT = ∇∂

(0)
t lnT = ∇

(
mξ

T
− 2

m
γ − ζ(0)

)
= −
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where

γn ≡ ∂γ

∂n
, γT ≡ ∂γ

∂T
, (A 16)

ξn ≡ ∂ξ

∂n
, ξT ≡ ∂ξ

∂T
. (A 17)
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Upon deriving Eqs. (A 14), use has been made of the explicit form of ζ(0). Since the
gradients of the fields are all independent, Eq. (A 4) can be separated into independent
equations for each coefficient. This leads to the following set of linear, inhomogeneous
integral equations:

1
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(A 19)
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Equations (A 18)–(A 21) reduce to the ones previously obtained for dry granular fluids
(no gas phase) (Garzó & Dufty 1999; Lutsko 2005) when β = γ = ξ = 0.

Appendix B. Kinetic contributions and collisional cooling rate

In this Appendix we give some details on the evaluation of the kinetic contributions to
the transport coefficients η, κ and µ and the first-order contribution ζU to the collisional
cooling rate.
Let us start with the shear viscosity η. Its kinetic part ηk is given by

ηk = − 1

(d− 1)(d+ 2)

∫
dvDijCij(V), (B 1)

where Dij = m(ViVj − 1
dV

2δij). To obtain it, we multiply (A 19) by Dij and integrate
over velocity to get
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dVDij(V)Ki

[
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∂Vj
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]
,

(B 2)
where

νη =

∫
dvDij(V)LCij(V)∫
dvDij(V)Cij(V)

, (B 3)
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and use has been made of the results∫
dVDij

∂

∂Vℓ
Cij = 0,

∫
dVDij

∂

∂Vℓ
VℓCij = 2(d− 1)(d+ 2)ηk, (B 4)

∫
dVDij

∂2

∂V 2
Cij = 0. (B 5)

The first identity in Eq. (B 4) and Eq. (B 5) follow from the solubility conditions of the
Chapman-Enskog method:∫

dv{1,v, v2}f (1)(V) = {0,0, 0}. (B 6)

The collision integral of the right hand side of Eq. (B 2) has been evaluated in previous
works (Garzó & Dufty 1999; Lutsko 2005). Thus, the kinetic part ηk is given by

ηk =
nT

νη − 1
2

(
ζ(0) − m

T ξ − 2
mγ

) [1− 2d−2

d+ 2
(1 + α)(1− 3α)ϕχ

]
. (B 7)

In order to get an explicit expression for ηk, one has to consider the leading terms in
a Sonine polynomial expansion of the distribution function. Here, we have considered a
recent modified version of the standard method (Garzó et al. 2007c, 2009) that yields
good agreement with computer simulations even for quite strong values of dissipation
(Montanero et al. 2007). The final form of ηk is given by Eq. (7.7).
The kinetic parts κk and µk of the transport coefficients characterizing the heat flux

are defined, respectively, as

κk = − 1

dT

∫
dvS(V) ·A(V), (B 8)

µk = − 1

dn

∫
dvS(V) ·B(V), (B 9)

where

S(V) =

(
m

2
V 2 − d+ 2

2
T

)
V. (B 10)

We obtain first the kinetic part κk. It is obtained by multiplying Eq. (A 18) by S(V) and
integrating over V. The result is
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where

νκ =

∫
dvS(V) · LA(V)∫
dvS(V)A(V)
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and use has been made of the results∫
dVSi

∂

∂Vℓ
Ai = 0,

∫
dVSi

∂

∂Vℓ
VℓAi = 3dTκk, (B 13)

∫
dVSi

∂2

∂V 2
Ai = 0. (B 14)

The right hand side of Eq. (B 11) has been already evaluated for dry granular fluids
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(Garzó & Dufty 1999; Lutsko 2005) so that the final form of κk can be easily obtained from
Eq. (B 11). It is given by Eq. (7.17). The evaluation of µk follows similar mathematical
steps as those made in the calculation of κk. Its explicit form can be written as

µk =
κ0ν0T

n

[
νµ − 3

2
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)]−1 {
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, (B 15)

where

νµ =

∫
dvS(V) · LB(V)∫
dvS(V)B(V)

. (B 16)

As in the case of the shear viscosity, to get the explicit forms of νκ and νµ one has
consider the leading terms in the (modified) Sonine polynomial expansion (Garzó et al.
2007c, 2009). To leading order the results yield νκ = νµ where µκ is given by Eq. (7.22).
We consider finally the first-order contribution ζU to the collisional cooling rate. It is

given by Eq. (7.25) where ζ11 is defined as

ζ11 =
1
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3
12f
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where the unknown functions D(V) are the solutions to the linear integral equation
(A 21). An approximate solution to this integral equation (A 21) can be obtained by
taking the leading Sonine approximation

D(V) → eDfM (V)F (V), (B 18)

where

F (V) =
( m
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V 4 − d+ 2
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. (B 19)

The coefficient eD is given by

eD =
2

d(d+ 2)

1

n

∫
dV D(V)F (V). (B 20)

Substitution of Eq. (B 19) into Eq. (B 17) gives

ζ11 =
3(d+ 2)

32d
χ(1− α2)

(
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3

128
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)
ν0eD. (B 21)

The coefficient eD is determined by substituting Eq. (B 22) into the integral equation
(A 21), multiplying by F (V) and integrating over V. The result is
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2
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∫
dVF (V)D(V), (B 22)

where the term ζ11a2 has been been neglected in accord with the present approximation.
Moreover, the terms proportional to a2 coming from νγ and ζ(0) must be also neglected
by consistency. In Eq. (B 22), we have introduced the collision frequency

νγ =

∫
dVF (V)L[fM (V )F (V)]∫
dVfM (V )F (V)F (V)

. (B 23)

As before, the right hand side of Eq. (B 22) has been previously evaluated for dense
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dry granular fluids (Garzó & Dufty 1999; Lutsko 2005). Taking into these results, the
expression for eD can be written as

eD =

(
νγ − γ

m
− 3mξ

2T
+

3

2
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)−1
9(d+ 2)2d−8

d2
ϕχ

[
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(
1

3
− α

)
a2
2

]
,

(B 24)
where ω∗ and νγ are given by Eqs. (7.28) and (7.29), respectively. With this result one
gets the expression (7.27) for ζ11.

Appendix C. Another theory for suspensions

In this Appendix we display the explicit expressions for η and κ used by Agrawal et al.
(2001). They can be written as η = η0η

∗ and κ = κ0κ
∗ where the (reduced) coefficients

η∗ and κ∗ are given by

η∗ = 1.2

{
µ0

χδ(2− δ)

(
1 +

8

5
ϕδχ

)[
1 +

8

5
δ(3δ − 2)ϕχ

]
+

768

25π
δϕ2χ

}
, (C 1)

κ∗ =
λ0

χ

{(
1 +

12

5
ϕδχ

)[
1 +

12

5
δ2(4δ − 3)ϕχ

]
+

64

25π
(41− 33δ)δ2ϕ2χ2

}
. (C 2)

Here, we have introduced the quantities

µ0 = (1 + 2β∗)
−1

, β∗ =
5
√
π

128

CDF (ϕ)

ϕχ

ρg
ρs

Rem
ReT

, (C 3)

λ0 =
8

δ(41− 33δ) + 36β∗ , (C 4)

δ =
1 + α

2
, F (ϕ) = (1− ϕ)2.65, (C 5)

CD = (24/Rem)(1 + 0.15Re0.687m ), Rem < 1000, CD = 0.44, Rem > 1000. (C 6)
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Garzó, V. 2005 Instabilities in a free granular fluid described by the Enskog equation. Phys.
Rev. E 72, 021106.
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