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Hybrid Two-Fluid DEM Simulation
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Simulations of gas-solid fluidized beds have been performed using a hybrid simulation
method, which couples the discrete element method (DEM) for particle dynamics with the
averaged two-fluid (TF) continuum equations for the gas phase. The coupling between
the two phases is modeled using an interphase momentum transfer term. The results of
the hybrid TF-DEM simulations are compared to experimental data and TF model simu-
lations. It is found that the TF-DEM simulation is capable of predicting general fluidized
bed dynamics, i.e., pressure drop across the bed and bed expansion, which are in agree-
ment with experimental measurements and TF model predictions. Multiparticle contacts
and large contact forces distribute in the regions away from bubbles, as demonstrated
from the TF-DEM simulation results. The TF-DEM model demonstrates the capability to
capture more heterogeneous structural information of the fluidized beds than the TF
model alone. The implications to the solid phase constitutive closures for TF models are
discussed. However, the TF-DEM simulations depend on the form of the interphase
momentum transfer model, which can be computed in terms of averaged or instantaneous
particle quantities. Various forms of the interphase momentum transfer model are exam-
ined, and simulation results from these models are compared. �DOI: 10.1115/1.2786530�
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ntroduction
Gas-solid fluidized beds are widely used in many industrial

pplications, e.g., fluid catalytic cracking, due to the contact be-
ween gas and solid phases, which prompts rapid heat and mass
ransfer and fast chemical reactions. However, the dynamics of
as-solid fluidized beds need to be better understood in order to
mprove existing processes and scale up new processes. Reliable
imulation tools can provide valuable insights into gas-solid flow
rocesses and, as a result, accelerate the achievement of substan-
ial process improvements �1�.

The dynamics of fluidized beds can be described at different
evels of detail �2�. At the most fundamental level �atomic or

olecular scale is not considered�, the motion of the whole sys-
em is determined by the Newtonian equations of motion for the
ranslation and rotation of each particle, and the Navier–Stokes
nd continuity equations. The fluid motion and particle motion are
inked by the no-slip condition on each particle boundary. At the
econd level, the fluid velocity at each point is replaced by its
verage, taken over a spatial domain large enough to contain
any particles but still small compared to the whole region occu-

ied by the flowing mixture. The Newtonian equations of motion
re solved for each particle in a Lagrangian framework. The cou-
ling force between fluid and particles is then related to the par-
icle’s velocity relative to the locally averaged fluid velocity and
o the local concentration of the particle assembly. At a third level,
oth the fluid velocity and the particle velocity are averaged over
ocal spatial domains. A description at this level of detail is often
eferred as the two-fluid model �TFM�.

The kinetic theory of granular flows �KTGF� has been success-
ully applied to the TFM for fluidization in the last decade �3�.
he KTGF has a basic assumption that particle collisions are in-
tantaneous and binary. However, questions about the validity and
apability of KTGF arise because of the microstructures formed in
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the fluidized beds, e.g., clusters in a riser �4� and “defluidized”
zones in a bubbling fluidized bed �5�. In a dense bubbling fluid-
ized bed, the particle pressure around a bubble was experimentally
measured and shown to be large in the region far below the bubble
where there is no agitation �5�. These facts lead to speculations
that lasting multiple contacts in dense fluidized beds limit the
application of KTGF. Previous experiments �6� and models �7,8�
also showed that diffusion and mixing are dominated by geom-
etry, consistent with long-lasting contacts �but not thermal colli-
sions� in dense granular flows. However, there has not yet been a
quantitative analysis to assess multiparticle microstructures under
certain fluidization conditions or how the microstructures affect
the constitutive behavior of a dense fluidized bed. A good under-
standing of the spatial distribution and temporal evolution of mul-
tiparticle contacts and corresponding particle contact forces is a
necessary step toward developing constitutive models that can ac-
curately predict fluidized bed dynamics.

In this paper, a hybrid model at the second level will be em-
ployed to improve the understanding of multiparticle contacts in a
fluidized bed. The hybrid model couples a TFM to solve the gas
phase with the discrete element method �DEM� to solve the par-
ticle motion equations. Therefore, the hybrid model can simulate a
fluidized bed at particle scales and produce useful information to
analyze the microstructures as well as particle dynamics. The
computational results from the hybrid model will be compared
and validated with experimental and TFM results. A key consid-
eration in the hybrid model is the coupling between the phases,
i.e., the fluid-particle interaction force. Different formulations
have been used to calculate and transfer the force between phases
�9–12�. However, formulations have not been thoroughly analyzed
for different flow conditions. In this paper, two different ways to
transfer the effective drag force, an important coupling term be-
tween gas and particles, will be discussed, and simulation results
from these two methods will be compared.

Methodology

Multifluid Model. The multifluid Eulerian model describes the
gas phase and solid phases as interpenetrating continua. The par-
ticle mixture is divided into a discrete number of phases, each of

which can have different physical properties, e.g., particle diam-
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ter. It should be noted that the TFM for a gas phase and single
olid phase is a special case, m=1, for the general formula pre-
ented next. The governing equations for the multifluid model are
13�

Continuity equation for the gas phase:

�

�t
��g�g� + � · ��g�gvg� = �

n=1

Ng

Rgn �1�

Continuity equation for the mth solid phase:

�

�t
��sm�sm� + � · ��sm�smvsm� = �

n=1

Nsm

Rsmn �2�

Momentum equation for the gas phase:

�

�t
��g�gvg� + � · ��g�gvgvg� = � · S�g + �g�gg − �

m=1

M

Igm �3�

Momentum equation for the mth solid phase:

�

�t
��sm�smvsm� + � · ��sm�smvsmvsm�

= � · S� sm + �sm�smg + Igm − �
l=1

l�m

M

Iml �4�

Translational granular temperature equation �4�:

3

2
� �

�t
��sm�sm�sm,t� + � · ��sm�sm�sm,tvsm��

= − � · qsm − S� sm : � vsm + �sm,slip − Jsm,coll − Jsm,vis �5�
here the translational granular temperature is defined as

�sm,t =
1

3
�Cpi

2 	 �6�

he fluctuation in the particle translational velocity shown in Eq.
6� is defined as Cpi=vpi−vsm, where vpi is the instantaneous
ranslational particle velocity and the symbol � 	 designates the
peration of taking average.

The constitutive equations for the solid phases were derived for
ranular flows �14�. There are two distinct flow regimes in granu-
ar flows: a viscous or rapidly shearing regime in which stresses
rise due to collisional or translational momentum transfer and a
lastic or slowly shearing regime in which stresses arise due to
oulomb friction between grains in close contact. Two different
pproaches are used for these regimes:

S� sm =
− Psm
p I� + ��sm

p if �s � �s
*

− Psm
v I� + ��sm

v if �s � �s
* � �7�

here Psm
p and ��sm

p are the pressure and the viscous stress in the
th solid phase for the plastic regime, Psm

v and ��sm
v are the pres-

ure and the viscous stress for the viscous regime, and �g
* is a

ritical packing solid volume fraction, set to 0.58 for the simula-
ions in this paper.

The granular stress equation based on KTGF �15� is applied to
he viscous regime. The granular pressure and stresses are given
y

Psm
v = K1m�sm

2 �sm,t �8�

��sm
v = 2�sm

v D� sm + 	sm
v tr�D� sm�I� �9�

here 	sm
v is the second coefficient of viscosity,

	sm
v = K2m�sm

��sm,t �10�
v
he shear viscosity factor �sm is
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�sm
v = K3m�sm

��sm,t �11�

The strain rate tensor D� sm is given by

D� sm =
1

2
��vsm + ��vsm�T� �12�

The coefficients K1m, K2m, and K3m are functions of particle den-
sity, diameter, restitution coefficient, radial distribution function,
and local volume fractions. The solid stress tensor in the viscous
regime only takes into account contributions from particle trans-
lational momentum flux and binary collisions. In the plastic flow
regime, the solid stress tensor was derived based on plastic flow
theory �16� and critical state theory �17�.

The constitutive equation for the gas phase stress tensor is

S�g = − PgI� + ��g �13�

where Pg is the gas pressure and I� is the identity tensor. The
viscous stress tensor ��g is assumed to be of the Newtonian form

��g = 2�gD� g + 	g � · vg �14�

where D� g is the strain rate tensor for the gas phase. The gas-solid
momentum transfer �Igm� will be discussed in the subsection on
coupling TFM and DEM.

Discrete Element Method. Individual particle motion in a flu-
idized bed can be described by Newtonian equations of motion,
which is a Lagrangian approach. The DEM employs numerical
integration of the equations of motion to resolve particle trajecto-
ries �18�. The translational and rotational motions of a particle are
governed by

mi
dvpi

dt
= fci + fgpi + mig �15�

Ii
d�i

dt
= Ti �16�

where fci is the particle-particle contact force, fgpi is the fluid-
particle interaction force, mig is the gravitational force, Ti is the
torque arising from the tangential components of the contact
force, and Ii, vpi, and �i are the moment of inertia, linear velocity,
and angular velocity, respectively. The net contact force fci and
torque Ti acting on each particle result from a vector summation
of the force and torque at each particle-particle contact. A linear
spring-dashpot model is employed for the contact force model due
to its simplicity and reasonable accuracy �18�. The basic prin-
ciples of the linear spring-dashpot model are briefly described in
the following.

Two contacting particles 
i , j� are shown in Fig. 1 with radii

ai ,aj� at positions 
ri ,r j�, with velocities 
vi ,v j� and angular ve-
locities 
�i ,� j�. The normal compression 
ij, relative normal ve-
locity vnij

, and relative tangential velocity vtij
are �19�


ij = d − rij �17�

vnij
= �vij · nij�nij �18�

vtij
= vij − vnij

− �ai�i + aj� j� � nij �19�

where d=ai+aj, rij =ri−r j, and nij =rij /rij, with rij = �rij� and vij
=vi−v j. The rate of change of the elastic tangential displacement
utij

, set to zero at the initiation of a contact, is

dutij

dt
= vtij

−
�utij

· vij�rij

rij
2 �20�

The last term in Eq. �20� arises from the rigid body rotation

around the contact point and ensures that utij

always lies in the
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ocal tangent plane of contact. Normal and tangential forces acting
n particle i are

Fnij
= f�
ij/d��kn
ijnij − �nmeffvnij

� �21�

Ftij
= f�
ij/d��− ktutij

− �tmeffvtij
� �22�

here kn,t and �n,t are the spring stiffness and viscoelastic con-
tants, respectively, and meff=mimj / �mi+mj� is the effective mass
f the spheres with masses mi and mj. The corresponding contact
orce on particle j is simply given by Newton’s third law, i.e.,
ji=−Fij. The function f�
ij /d�=1 is for the linear spring-dashpot

odel, and f�
ij /d�=�
ij /d is for Hertzian contacts with vis-
oelastic damping between spheres.

Static friction is implemented by keeping track of the elastic
hear displacement throughout the lifetime of a contact. The static
ield criterion, characterized by a local particle friction coefficient
, is modeled by truncating the magnitude of utij

as necessary to
atisfy �Ftij

�� ��Fnij
�. Thus, the contact surfaces are treated as

sticking” when �Ftij
�� ��Fnij

� and as “slipping” when the yield
riterion is satisfied. The total contact force and torque acting on
article i are then given by

fci = �
j

�Fnij + Ftij� �23�

Ti = −
1

2�
j

rij � Ftij �24�

The amount of energy lost in collisions, characterized by the
nelasticity through the value of the coefficient of restitution e, is
efined as the negative ratio of the particle velocity after collision
o the velocity before collision. For the linear spring-dashpot

odel, the coefficient of normal restitution en and contact time tc
an be analytically obtained,

en = exp�− �ntc/2� �25�

here the contact time tc is given by

tc = ��kn/meff − �n
2/4�−1/2 �26�

he value of the spring constant should be large enough to avoid
article interpenetration, yet not so large as to require an unrea-
onably small simulation time step 
t since an accurate simulation
ypically requires 
t� tc /50. After the contact force is calculated,
he equations of motion, which are ordinary differential equations,

ig. 1 Schematic of two particles i and j in contact and posi-
ion vectors ri and rj, respectively, with overlap �ij
an be numerically integrated to get the particle trajectories.
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Coupling of the Two-Fluid Model and Discrete Element
Method. A hybrid model at the second level is constructed by
coupling the TFM for the gas phase with DEM for the particle
motion �20�. The coupling term between the equations for gas and
particle motion is the gas-particle interaction Igm in the gas mo-
mentum equation and fgpi in the particle equation of motion. Due
to the averaging process in the derivation of momentum equations
for the TFM, the fluid-particle interaction force may be written as
the sum of a component due to macroscopic variations in the fluid
stress tensor and a component representing the effect of variations
in the point stress stress tensor as the gas flows around the particle
�21�. For the gas force on a particle,

fgpi = Vpi � · S�g + fgpi� �27�

where Vpi is the volume of particle i. The first term on the right in
Eq. �27� accounts for the macroscopic variation in the fluid stress
tensor. The second term on the right in Eq. �27� includes skin
friction and drag contributions accounting for the detailed varia-
tion in the stress tensor. In general, the term comprises an effec-
tive drag force in the direction of the relative velocity between the
fluid and particle, and a virtual or added mass force accounting for
the resistance of the fluid mass that is moving at the same accel-
eration as the particle. For gas-solid flows, the virtual mass force
may be neglected and fgpi� reduces to an effective drag force,
which should be the product of the local void fraction �g and the
drag force fdi obtained from experimentally based correlations.
Substituting Eq. �13� to Eq. �27�,

fgpi = − Vpi � Pg + Vpi � · ��g + �gfdi �28�

The drag force on a single particle of diameter dpi in a multipar-
ticle system can be calculated from the correlation,

fdi =
1

2
CDi�g

�dpi
2

4
�g

2�vg
i − vpi��vg

i − vpi�f��g� =
�dpi

3

6�g�sm

�vg

i − vpi�

�29�

where vg
i is the gas velocity at the location of particle i and f��g�

is a function of the local void fraction. The single particle velocity
vpi is used since the correlations relate the effective drag force to
that of a single particle in the absence of other particles. The
expressions of 
 are extended from the work of Ergun �22� and
Wen and Yu �23�, and were used by Tsuji et al. �9�,


 = �150
�sm

2

�gdpi
2 �g + 1.75�sm

�g

dpi
�vg

i − vpi� for �g � 0.8

3

4
CD

�g�sm

dpi
�g�vg

i − vpi��g
−2.7 for �g � 0.8�

�30�

The drag coefficient CDi depends on the particle Reynolds number
Repi= �dpi�g�vg

i −vpi��g� /�g, and is given by

CDi = 
24�1 + 0.15Repi
0.687�/Repi for Repi � 1000

0.43 for Repi � 1000
� �31�

The fluid-particle interaction force per unit volume of bed, Igm,
in the gas momentum equation �refer to Eq. �3�� is obtained by
summing the gas forces fgpi over all the particles in a fluid cell and
dividing by the volume of the fluid cell, Vcell. Thus,

Igm =

�
i

Nm

fgpi

Vcell
= − �sm � Pg + �sm � · �̄g + �

i

Nm

�gfdi/Vcell �32�

where Nm is the number of particles of the mth phase in a fluid
cell. The last term in Eq. �32� may be calculated approximately

using local mean gas and particle velocities,
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�
i

Nm

�gfdi/Vcell = 
�vg − vsm� �33�

here 
 uses the same form as in Eq. �30�, except that the veloc-
ty vpi is replaced by the local mean value in a fluid cell, i.e., vsm.

The solid volume fraction and local mean solid velocities are
valuated in a fluid computational cell,

�sm =

�
i

Nm

Vpi

Vcell
�34�

vsm =

�
i

Nm

vpiVpi

�
i

Nm

Vpi

�35�

he volume of a computational cell, Vcell, in two-dimensional
2D� simulations is calculated using the diameter of a spherical
article as the cell thickness in the third dimension.

Based on the previous discussion, it can be seen that the fluid-
article effective drag force can be calculated in two ways to
ransfer the effects between gas and particle motions. The first

ethod is to calculate the drag force using Eq. �33� in a fluid cell
nd then assign this mean drag force back to each particle in the
ell. This method, with the assumption that particles in a cell with
he same diameter have the same drag force, is used for most of
he simulations in this paper. The second method is to calculate
he drag force on each particle using Eq. �29� and then sum up the
article drag forces in a fluid cell as the total drag force on the
uid according to Newton’s third law. This method is employed
or one case as a comparison to the results from the first method.
owever, it should be noted that further assumptions are made in

his paper. One assumption is that the total drag force on the gas is
alculated using Eq. �33� and is approximately equal in magnitude
o that obtained from the summation of each particle’s drag force.
or the second method, Eq. �33� is also used for calculating the
rag force on the gas phase, and the only difference between these
ethods is the way to obtain the drag force on the particles. Fi-

ally, the viscous stress gradient in Eq. �28� is neglected.

Numerical Formulation. A FORTRAN code, multiphase flow
ith interphase exchanges �MFIX�, is used for all simulations in

his work. MFIX uses a finite volume approach with a staggered
rid for the discretization of the TFM governing equations to re-
uce numerical instabilities �24�. Scalars such as pressure and
olume fraction are stored at the cell centers, and the velocity
omponents are stored at cell surfaces. A second-order discretiza-
ion is used for spatial derivatives and first-order discretization for
emporal derivatives. A modified SIMPLE algorithm is employed to
olve the discretized equations �24�. The explicit time integration
ethod is used to solve the translational and rotational motion

quations used in the DEM �10,18�.

imulation Conditions
Gas-solid fluidized beds were simulated using the hybrid TF-

EM model presented in the methodology subsection �for m=1�.
he fluidized beds have very small depths compared to the other

wo dimensions. Therefore, 2D simulations were performed,
hich also reduces the computational requirements needed for

hree dimensional �3D� simulations. The first computational case
imulates a fluidized bed experiment with a central air jet flow,
resented by Tsuji et al. �9�. This case will be referred to as the
entral-jet case, hereafter. The computational domain is shown in
ig. 2�a�, and the simulation parameters are listed in Table 1.
ost particle parameters are set to be the same as what were used
n the experiment. One important difference between the compu-
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tational setup and the experimental setup is that there is only one
layer of particles in the thin depth direction for computations,
while there were about five particle layers in the experiment. A
second simulation for a bubbling fluidized bed with a uniform
inflow was performed to analyze a different flow situation, where
the bed is fluidized by a uniform air inflow. The simulations were
based on the experiment of the bubbling fluidized bed by Gold-
schmidt et al. �25�. This case will be referred to as the uniform

Fig. 2 Schematic showing computational domains for the ex-
periments of „a… Tsuji et al. †9‡ and „b… Goldschmidt et al. †25‡

Table 1 Computational parameters and general initial and
boundary conditions for the experiments of Tsuji et al. †9‡ and
Goldschmidt et al. †25‡

Ref. �9� Ref. �25�

Geometry
Height of domain �cm� 90 45
Width of domain �cm� 15 15
Horizontal grid size, �x �cm� 1 1
Vertical grid size, �y �cm� 2 1

Particle properties
Particle diameter �cm� 0.4 0.25
Particle density �g/cm3� 2.7 2.526
Particle stiffness coefficient �dyn/cm� 8�105 8�105

Particle damping coefficient �dyn s/cm� 18 1.77
Particle friction coefficient 0.2 0.1
Particle number 2400 4000

Initial conditions
�g

1.0 1.0

vg�=Umf� �cm/s� 180 128
Initial bed height �cm� 22 15

Boundary conditions
Central air jet inflow �cm/s� 3900 1.5Umf
Specified pressure at outlet �Pa� 101325 101325
Wall boundary for gas phase No slip No slip
Wall stiffness coefficient �dyn/cm� 1.2�106 1.2�106

Wall damping coefficient �dyn s/cm� 22 3.93
NOVEMBER 2007, Vol. 129 / 1397

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



i
c
o
s

b
m

w
�
m
f
a
t
b
t
f
i

u
T
p
c
t
c
O
w
fl

R

c
a
a
T
g
�
s
T
T
d
e
r
p
u
g

F
t

1

Downloa
nflow case, hereafter. The simulation was set up using the same
onditions as in the experiment, except that there is only one layer
f particles in the third dimension. The computational domain is
hown in Fig. 2�b�, and parameters are shown in Table 1.

The particle response to the flow fields in these simulations can
e analyzed as follows to further elucidate and justify the hybrid
ethod used. The particle Stokes number is defined as

St =
�p

�g
�36�

here �p=�pd2 /18� is the particle Stokesian relaxation time and
g=d /vg can be deemed as a characteristic time scale for gas
omentum convection over one particle diameter. Taking the uni-

orm inflow case as an example, the Stokes number St�37,422
nd the particle volume fractions are typically greater than 0.1 in
he bed. In such a dense particle flow with very high Stokes num-
er, gas turbulence is damped and small scale gas velocity fluc-
uations do not affect the particle dynamics significantly. There-
ore, directly modeling the subgrid gas velocities is not considered
n this paper.

Simulations using the TFM for both cases were also carried out
sing the same grid resolutions corresponding to those listed in
able 1. However, the particle motion is modeled by the solid
hase equations in the TFM instead of using DEM directly. All the
ases were simulated for 20 s of simulation time. The computa-
ional times used by the TFM and the hybrid method for the
entral-jet case were 5350 s and 6780 s, respectively, on one
pteron 270 �2.0 GHz� processor. Only results for the first 10 s
ill be presented in the next section since it was found that the
uidized beds reached a quasisteady state after approximately 5 s.

esults and Discussion
Computational results obtained from the simulation of the

entral-jet case are first presented. The pressure drop at 20 cm
bove the inlet boundary obtained from the TF-DEM simulation,
s shown in Fig. 3, is similar to the computational findings of
suji et al.; i.e., the frequency and magnitude of fluctuation are in
ood agreement with experiments but with a higher mean pressure
9�. The TFM predicts that the pressure drop fluctuates around a
imilar mean pressure, but with a smaller fluctuating amplitude.
his is probably because averaged equations are solved in the
FM. A refined grid with �x=1 cm and �y=1 cm is used to
etermine the grid dependence of this hybrid method. Statistical
rror in the particle field estimation becomes larger as the grid is
efined due to the grid-cell-based averaging technique used in this
aper. The comparison between the temporally averaged solid vol-
me fraction distributions calculated from the coarse and fine

ig. 3 Pressure drop at 20 cm above the inlet boundary fluc-
uates with time for the central-jet fluidized bed
rids is shown in Fig. 4. It can be seen that the result from the fine

398 / Vol. 129, NOVEMBER 2007
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grid shows a slightly higher bed expansion and a more asymmet-
ric solid distribution with respect to the central jet. A method to
address the particle field estimation problem will be discussed in
the conclusions. The difference caused by the grid refinement,
however, does not alter the comparison between the hybrid
method and TFM made in this paper. The coarse grid was also
used in previous computational studies �9,11�. The coarse grid
results are thus shown in the following. The choice of the grid for
the uniform inflow case is based on our grid refinement study for
the TFM simulations of the same systems �26�. The logic is that
this grid should capture enough details of the gas field and particle
field as shown in the TFM simulations. It has been shown that the
grid of cell size �x=1 cm and �y=1 cm produced an average
error of 1.4% and a maximum error of 3.7% in time-averaged
volume fraction, compared to the Richardson extrapolation re-
sults, and that further grid refinement had little influence on the
results �26�.

The bulk coordination number is defined as the average number
of contacting neighbors of a particle. The time evolution of bulk
coordination number can be used to characterize dynamic re-
sponses of granular systems �27�. The bulk coordination number
corresponds to the first peak in the isotropic radial distribution
function g�r� and is a measure of order in the particle pattern.
Thus, it can indirectly give a sense of whether the particle phase is
more “gaslike” or “liquidlike.” The isotropic radial distribution
function g�r� cannot be rigorously defined in the anisotropic con-
figurations used in the simulations and is not presented in the
paper. The bulk coordination numbers varying with time for the
two simulations are shown in Fig. 5. The bulk coordination num-
ber for the central-jet case varies around 1.2, which indicates pair
structures or other multicontact structures that exist in the system.
In contrast, the bulk coordination number for the uniform inflow
case varies around 0.5, which indicates that structures with con-
tacting particles do not prevail. To further elucidate the spatial
variation of the particle contacts, we look at local quantities for
each particle.

The particle instantaneous positions and velocities are shown in

Fig. 4 The averaged „5–10 s… particle volume fractions for the
central-jet fluidized bed for „a… the coarse grid with �x=1 cm
and �y=2 cm and „b… the fine grid with �x=1 cm and �y
=1 cm. The domain in the figure only shows 45 cm above the
inlet.
Fig. 6 for the TF-DEM simulation of the central-jet case. The
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article movements and bed expansion behaviors are also in quali-
ative agreement with experimental observations. These agree-

ents serve to initially substantiate the practicality of the hybrid
F-DEM model presented here. The number of contacting par-

icles for each particle, Nc, is defined as the number of contacting
eighbors of one particle. A direct interpretation of Nc is that a
article is in a binary collision when Nc=1, or is in a multicontact
hen Nc�1. The value of Nc for each particle is also presented in
ig. 6. From the results, it is clear that Nc is not distributed ho-
ogeneously in space. The value of Nc is low �1–2� in bubble

egions but high in other regions ��2�, which are mainly near the
ottom corners of the bed after the jet penetrates the bed �see Figs.
�b�–6�d��. High Nc shows that multicontacts prevail in those re-
ions away from bubbles.

The spatial distributions of particle contact forces, drag forces,
nd ratios of these forces are shown in Fig. 7 for the central-jet
ase. The magnitudes of total forces in every computational cell
re shown, i.e., the total contact force at a cell center, fcj

�i
Nmfci, and the total drag force at a cell center, fgpj� =�i

Nmfgpi� ,
here i and j are indices of particles and grid nodes, respectively.
he force is also scaled by the magnitude of the gravitational

orce of a particle. It can be seen from the instantaneous distribu-
ions �Fig. 7�a�� that the contact forces �left frame� are large in the

Fig. 5 The bulk coordination numbers as a function of time

ig. 6 Instantaneous particle positions and velocities for the
entral-jet fluidized bed, denoted by points and vectors. The
ontour levels show the magnitudes of Nc. The domain in the

gure only shows 45 cm above the inlet.
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regions away from bubbles, which is consistent with the experi-
mental observation that higher particle pressure is generated under
bubbles �5�. The instantaneous drag forces �shown in the middle
frame of Fig. 7�a�� are large in the jet region. The ratios of contact
forces to drag forces vary between 2 and 10 in most of the bed
region. However, contact forces may be as high as 100 times that
of the drag forces �higher than the maximum contour level shown
in Fig. 7� in the corners beside the jet. The high contact force
regions could also correspond to the high solid stress regions. The
locations of large contact forces and force ratios are correlated
with the locations of higher Nc, as compared to the corresponding
snapshot at 5 s in Fig. 6. Solid volume fractions in most of these
regions are less than the critical solid volume fraction �s

* �see the
left panels in Fig. 8�, and the solid stress is calculated using the
KTGF. Since the solid stress calculated using the KTGF does not
take into account the contribution from the collisions with Nc
�1, the solid stresses in these regions are also expected to deviate
from the stresses predicted using the KTGF. These observations
emphasize the importance of studying particle contacts in the re-
gions away from bubbles in order to understand the constitutive
behavior of a fluidized bed. The time-averaged distributions �Fig.
7�b�� show similar trends although the forces are distributed more

Fig. 7 Particle contact forces, drag forces, and their ratios for
the central-jet fluidized bed for „a… the instantaneous distribu-
tion at 5 s and „b… the time-averaged distribution at 5–10 s. The
left panels show contact forces, the middle panels show drag
forces, and the right panels show the ratios of contact forces to
drag forces. The left legends are the magnitudes of forces
scaled by the gravitational force of a particle. The right legends
are the ratios, where −1 indicates that the drag force is zero at
that position. Note that the highest ratio of 100 is not shown in
order to distinguish the majority of ratios below 20. The domain
in the figure only shows 45 cm above the inlet.
homogeneously.

NOVEMBER 2007, Vol. 129 / 1399

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t
f
u
F
t
p
g
m
g
i
t
m
c
t
r

F
b
t
T
t
i

1

Downloa
A comparison between the solid volume fractions predicted by
he TF-DEM model and those predicted by TFM is also per-
ormed. The instantaneous and time-averaged �5–10 s� solid vol-
me fraction distributions for the central-jet case are shown in
igs. 8�a� and 8�b�, respectively. The distributions demonstrate

hat the TF-DEM model and TFM model predict a similar jet
enetration behavior. However, the TFM predicts a more homo-
eneous and symmetric distribution of solids. The TF-DEM
odel can capture the concentration difference in the corner re-

ions, as seen in Fig. 8�b�. The predicted differences reflect the
nability of the TFM to capture the structural information although
he TFM predicts a similar mean pressure drop as the TF-DEM

odel does. The inability may also be due to the solid constitutive
losures used in the TFM. The closures do not adequately model
he stress and energy dissipation caused by multicontacts, which

ig. 8 Particle volume fractions for the central-jet fluidized
ed for „a… the instantaneous distribution at 5 s and „b… the
ime-averaged distribution at 5–10 s. The left panel shows the
F-DEM simulation and the right panel shows the TFM simula-

ion. The domain in the figure only shows 45 cm above the
nlet.
educes the preferential change in solid volume fractions. A quan-
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titative account of the differences between the stresses and dissi-
pation calculated using the TF-DEM and using the TFM is the
subject of a future study �28�.

For the uniform inflow case, bed dynamics were first analyzed
by the time evolution of the mean particle height. The mean par-
ticle height is defined as the arithmetic mean of the heights of all
particles in the bed. It is straightforward to calculate the particle
height in the TF-DEM model, and it can also be estimated by a
method defined in Ref. �26� for the TFM. The mean particle
height as a function of time is shown in Fig. 9. It is found that
mean particle heights predicted by both models fluctuate at a simi-
lar level. The 5–10 s time-averaged values are 8.9 cm and
9.16 cm for TF-DEM model and TFM, respectively. Both are
lower than the experimental value of 11.4 cm �29�. The particles’
instantaneous positions, velocities, and Nc are presented in Fig.
10. It can be seen that the bed is uniformly fluidized at the startup
stage �Fig. 10�a�� with no bubble and zero Nc over almost the
whole bed. After bubbles develop, higher Nc appear in regions
away from the bubble; however, the ratio of the number of mul-
ticontacts over the total number of collisions is small, fluctuating
around 0.3, as shown in Fig. 11. This small ratio indicates that the
binary collision assumption in the KTGF may still be reasonable
under this flow condition. In contrast, the ratio for the central-jet

Fig. 9 The mean particle height as a function of time for the
uniform inflow fluidized bed calculated from the TF-DEM model
and TFM

Fig. 10 Instantaneous particle positions and velocities for the
uniform inflow fluidized bed denoted by points and vectors.

The contour level shows the magnitude of Nc.
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case is higher than 0.6 most of the time, which indicates that the
binary collision assumption may deviate from the real particle
collision scenario to a larger degree. The spatial distributions of
particle contact forces, drag forces, and ratios of these forces for
the uniform inflow case are also shown in Fig. 12. Similar obser-
vations can be drawn as for the central-jet case. However, there is
no region where the contact forces are more than 15 times higher
than the drag forces, as observed in the corner regions for the
central-jet case.

The two different formulas for computing the effective drag
force based on averaged or instantaneous particle velocities were
applied to simulate the uniform inflow case. Since the method
using the averaged particle velocities produces the same forces on
each particle in a fluid cell, it tends to smear the difference be-
tween particle movement and results in less vigorous bed dynam-
ics. It is expected that the method using instantaneous particle
velocity will predict a higher bed expansion. This effect is actually
shown by the time-averaged solid volume fraction in Fig. 13,
where the result produced by the second method shows a slightly
higher bed expansion. The time-averaged mean particle height
predicted by the second method is 9.1 cm, and is higher than that

rces, and their ratios for the uniform
eous distribution at 5 s and „b… the

he left panels show contact forces,
d the right panels show the ratios of
gends are the magnitudes of forces
particle. The right legends are the
ig. 11 The ratio of particles in multicontacts to the total num-
er of particles in contact as a function of time
Fig. 12 Particle contact forces, drag fo
inflow fluidized bed for „a… the instantan
time-averaged distribution at 5–10 s. T
the middle panels show drag forces, an
contact forces to drag forces. The left le
scaled by the gravitational force of a
force is zero at that position.
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redicted by the first method. However, it should be noted that the
ifference between the mean quantities predicted by the two for-
ulas is not large. Local quantities, such as granular temperature,
ill be further studied to investigate the effect of the formulas.

onclusions
A methodology for a hybrid TF-DEM model for gas-solid flu-

dized beds has been presented. The model couples the DEM for
article dynamics with the TF equations for the gas phase. The
oupling between the two phases is modeled by the gas-particle
nteraction force. Simulations of two types of gas-solid fluidized
eds have been carried out using the hybrid simulation method.
he results of the hybrid TF-DEM simulations are compared to
xperimental data and TFM simulations. It is found that the TF-
EM simulation is capable of predicting general fluidized bed
ynamics, i.e., pressure drop across the bed and bed expansion,
hich are in agreement with experimental measurements and
FM predictions. The number of contacting particles Nc is found

o be greater than 1 in the regions away from the bubble. The
ontact forces are much larger than the effective drag forces in the
ame regions. It is also demonstrated that multicontacts prevail in
he central-jet fluidized bed, implying that the binary instanta-
eous collision assumption in the KTGF may not be applicable in
his flow condition. For the uniform inflow fluidized bed, the num-
er of contacting particles are around 1 to 2 so that the binary
ollision assumption is reasonable in this flow condition. With
urther research, the particle contact information will hopefully
rovide guidelines for a constitutive model development and may
ontribute to the subgrid modeling method proposed by Sundare-
an �30�. The relations between the flow conditions and fluidized
ed constitutive behaviors and how the multi-interactions should
e incorporated into the constitutive modeling clearly need further
nvestigation. It would be instructive to first compare the stresses
omputed using particle information from the TF-DEM simula-
ions with the stresses computed using the KTGF or using the
riction-kinetic model �31�. The stress analysis will be given in a
ollowing paper �28�.

The effect of computing an effective drag force on a particle in

ig. 13 Time average in the range of 5–10 s of the particle
olume fractions for the uniform inflow fluidized bed predicted
y the method using „a… averaged particle velocities and „b…

nstantaneous particle velocities
erms of averaged or instantaneous particle velocities was demon-
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strated. It was shown that the formulation using instantaneous
particle velocities better captures the force difference at the par-
ticle scale and predicts a higher bed expansion, which is closer to
the corresponding experimental results. Furthermore, the statisti-
cal error in the estimation of the interphase momentum transfer
term becomes high as the grid is refined. This motivates using
more sophisticated kernel estimation methods to achieve optimal
error control in both statistical error and discretization error
�32,33�.
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Nomenclature
C � fluctuation in particle translational velocity

�cm/s�
d � particle diameter �cm�
e � coefficient of normal restitution
g � acceleration of gravity �cm/s2�
I � moment of inertia of a particle �g cm2�
I � interphase momentum transfer �dyn/cm3�

Jcoll � rate of dissipation of translational fluctuation
kinetic energy due to particle collisions
�g/cm s3�

Jvis � rate of dissipation of translational fluctuation
kinetic energy due to interstitial gas viscous
damping �g/cm s3�

k � stiffness coefficient of a particle �dyn/cm�
m � mass of a particle �g�
n � unit normal vector from a boundary to

particles
N � particle number

Nc � coordination number
Ng � total number of gas phase chemical species

Nsm � total number of solid phase �m� chemical
species

P � pressure �dyn/cm2�
r � position vector �cm�
R � rate of formation �g/cm3 s�

Re � Reynolds number

S� � stress tensor �dyn/cm2�
t � time �s�

U � fluidization velocity �cm/s�
u � tangential displacement �cm�
v � velocity for gas and solids �cm/s�

Greek Letters

 � coefficient for drag forces �g/cm3 s�

 � normal compression in particle collision �cm�
� � volume fraction
� � viscous damping coefficient �1/s�
� � rate of dissipation of rotational fluctuation ki-

netic energy �g/cm s3�
�slip � production of translational fluctuation kinetic

energy due to gas-particle slip �g/cm s3�
� � coefficient of friction in DEM

�g � gas shear viscosity �dyn s /cm2�
�sm � solid shear viscosity �dyn s /cm2�

	 2

g � gas second coefficient of viscosity �dyn s /cm �
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	sm � solid second coefficient viscosity �dyn s /cm2�
� � angular velocity�1/s�
� � density �g/cm3�
� � translational granular temperature �cm2/s2�

uperscripts
p � plastic regime in granular flows
v � viscous regime in granular flows

ubscripts
cell � computational cell
coll � collision

g � gas phase
i � index of a particle
l � lth solid phase

m � mth solid phase
n � normal direction in the particle contact frame
t � tangential direction in the particle contact

frame
M � number of phases
mf � minimum fluidization

max � maximum value
p � particle
s � solid phase

w � wall boundary
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