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MOMENTUM TRANSFER IN GAS-SOLIDS FLOW 

Accurate representation of the momentum transfer between particles and fluid is necessary for 

predictive simulation of gas-solids flow in industrial applications. Such device-level simulations 

are typically based on averaged equations of mass and momentum conservation corresponding to 

the fluid and particle phase(s) in gas-solids flow (Syamlal, Rogers, & O'Brien, 1993), and these 

constitute the multi-fluid theory. The momentum conservation equation in this theory contains a 

term representing the average interphase momentum transfer between particles and fluid. The 

dependence of this term on flow quantities such as the Reynolds number based on mean slip 

velocity, solid volume fraction, and particle size distribution must be modeled in order to solve 

the set of averaged equations, and is simply referred to as a drag law. If higher levels of statistical 

representation are adopted—such as the second moment of particle velocity, or the particle 

distribution function—then the corresponding terms (such as the interphase transfer of kinetic 

energy in the second velocity moment equations) appearing in those equations also need to be 

modeled. 

 

Direct numerical simulation of flow past particles is a first-principles approach to developing 

accurate models for interphase momentum transfer in gas-solids flow at all levels of statistical 

closure. Since DNS solves the governing Navier-Stokes equations with exact boundary conditions 

imposed at each particle surface, it produces a model free solution with complete three 

dimensional time-dependent velocity and pressure fields. In principle, all Eulerian and 

Lagrangian flow statistics can be extracted from the DNS data making it a powerful tool for 

model validation and development (Pope, 2000; Rai, Gatski, & Erlebacher, 1995). While there 

are different numerical approaches available to perform DNS of gas-solids flow—such as the 

lattice Boltzmann method (LBM)—here we describe a DNS approach that is based on the 

immersed boundary method (IBM). The outline of this chapter is as follows. We first describe the 

context in which models for interphase momentum transfer arise. We begin with the transport 

equation for the one-particle distribution function that is the starting point for the kinetic theory of 

granular and multiphase flows. This is appropriate because all moment-based theories (averaged 



equations, second and higher moments) can be derived from this distribution function. Thus, by 

developing closure models at the level of the one-particle distribution function, we effectively 

model all moment equations. The appropriate physical problem that needs to be set up to 

approximate statistically homogeneous gas-solid suspension flow is then described. The 

expression for the mean interphase momentum transfer term in steady, homogeneous, gas-solids 

flow that arises from the averaged conservation equations in the two-fluid theory is then derived, 

and related to the equivalent term in the one-particle distribution function approach. Then the 

immersed boundary method and its implementation are described. Numerical error associated 

with forming statistical estimates of the interphase momentum transfer term is analyzed and 

decomposed into spatial, temporal and statistical contributions. This results in the identification of 

relevant numerical parameters (grid resolution, size of computational domain, number of particle 

configurations) corresponding to each of the error contributions. Numerical convergence of the 

IBM DNS code is established, and results from standard tests are presented that validate the 

simulation approach. Drag laws obtained from IBM simulations are discussed and compared with 

those obtained from other simulation methods. The IBM approach is compared with other 

simulation approaches, and relative advantages and disadvantages are discussed. Directions for 

further research in the formulation of models of gas-solids flow using DNS based on IBM are 

outlined. Finally, the contributions of this chapter are summarized along with concluding remarks 

regarding the use of IBM for direct numerical simulation of gas-solids flow.  

 

Transport of the particle distribution function 

The transport equation for the one-particle distribution function in gas-solids flow for 

monodisperse particles is (Chapman & Cowling, 1952; Garzo, Hrenya, & Dufty, 2007; Jenkins, 

1998; Koch, 1990; Liboff, 1990; Subramaniam, 2001) 
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where v is the velocity of the particles, , , tA x v is the conditional expectation of the 

acceleration and collfɺ is the term arising due to collisions between particles. 

 

 The principal difference between this equation for solid particles and its counterpart in 

molecular gases is the appearance of the conditional expectation of the 

acceleration , , tA x v inside the velocity derivative corresponding to transport of the distribution 

function in velocity space. The conditional expectation of acceleration cannot be expressed purely 

in terms of the distribution function, and is hence denoted an unclosed term in the above equation. 

It can depend on higher-order distribution functions (e.g., the two-particle distribution function) 

in the hierarchy resulting from a description of the particle system in terms of the Liouville 

density. It also depends on statistics of the carrier flow. Since analytical models are difficult to 

propose for this term beyond dilute particle flow in the Stokes flow regime, it must be inferred 

from direct numerical simulation data. Drag laws for steady flow through homogeneous 

suspensions are obtained by integrating the conditional expectation of the acceleration over 

velocity space to obtain the average force dF exerted on the particles by the fluid 
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where m is the mass of a particle, and n is the particle number density. 

 

Homogeneous suspension flow 

In order to calculate dF from DNS, it is natural to simulate a statistically homogeneous 

suspension flow with freely moving particles, and to then compute volume-averaged estimates 

of dF from particle acceleration data. Imposing a mean pressure gradient to balance the weight 

of the particles leads to a steady mean momentum balance. In this setup the particle positions and 

velocities sample a trajectory in phase space that corresponds to the specified nonequilibrium 

steady state, and time averaging can be used to improve the estimate for dF . However, such 

freely moving suspensions are computationally prohibitive especially because in order to propose 

drag laws these simulations need to be performed over a range of solid volume fractions and 

mean flow Reynolds numbers (based on mean slip velocity). Furthermore, over a wide range of 

volume fraction and particle Stokes number, the particle configuration in individual realizations 

develops spatial structures due to flow instabilities. Wylie and Koch (Wylie & Koch, 2000) 

performed simulations of a suspension with particles moving along ballistic trajectories between 

elastic hard sphere collisions, but this assumption that the fluid does not affect the particle motion 

is valid only in the limit of high Stokes number. 

 

Koch and Hill (Koch & Hill, 2001) discuss the relevant non-dimensional parameters that arise 

in the context of gas-solid suspensions. As noted in their work, direct numerical simulations are 

useful in developing drag laws for suspension flows where the effects of fluid inertia and the 

particle inertia cannot be neglected. In the simulations described in this work we neglect gravity, 

so the relevant nondimensional parameters are the Reynolds number (characterizing the 

importance of fluid inertia) and the particle Stokes number (characterizing the importance of 

particle inertia). While the Stokes flow regime (negligible fluid inertia) is amenable to analytical 

treatment, direct simulation is the only approach for gas-solid suspensions at finite Reynolds 

number.  

 

Steady flow past homogeneous assemblies of fixed particles 
A convenient simplification for high Stokes number suspensions is to replace the ensemble of 

particle positions and velocities sampled by the system in its nonequilibrium steady state, by a set 

of particle configurations and velocities that would result from a granular gas simulation. Steady 

flow past fixed assemblies of particles in configurations (and with velocities) sampled from this 

set is simulated, and drag laws are obtained by averaging over this ensemble. The idea of 

extracting drag laws from steady flow past random and ordered arrays of particles through 

particle assemblies has been successfully exploited by several researchers using the LBM 

simulation methodology developed by Ladd (Ladd, 1994a, 1994b) for particulate suspensions. 

For example,  Koch and co-workers (Hill, Koch, & Ladd, 2001a) and (Hill, Koch, & Ladd, 

2001b), referred to collectively as HKL, studied the steady flow past both ordered and random 

arrays. Kuipers and co-workers (van der Hoef, Beetstra, & Kuipers, 2005) and (Beetstra, van der 

Hoef, & Kuipers, 2007), collectively referred to as BVK, extended HKL’s LBM simulations to 

higher Reynolds numbers.    

 



In the simplest case of a monodisperse suspension, the drag law is extracted by computing 

steady nonturbulent flow at a specified mean slip Reynolds number past a set of random particle 

configurations (microstates) that correspond to a particular value of the solid volume fraction. 

The pair-correlation and higher-order statistics of the particle field are determined by the 

configurations resulting from the granular gas simulation. The particle velocity distribution can 

be initialized either from the granular gas simulation at finite granular temperature or it is often 

assumed that all particles move with the same velocity.  

 

GOVERNING EQUATIONS 

 

The schematic in  corresponds to the physical problem of flow past a single particle. Volumes 

occupied by the fluid and solid phases are denoted by fV and sV respectively, such that the total 

domain volume f s+=V V V . The bounding surface of the physical domain is denoted∂V , and the 

bounding surfaces of the solid phase and fluid phase are denoted by s∂V and f∂V , respectively. For 

incompressible flows, the mass and momentum conservation equations for the fluid-phase are 
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respectively. In the above equation p= ∇g is the gradient of modified pressure (Mohd-Yusof, 

1996), and fρ and fµ are the thermodynamic density and dynamic viscosity of the fluid-phase, 

respectively. At the particle-fluid interface, in order to ensure zero slip and zero penetration (for 

impermeable surfaces) boundary conditions, the relative velocity should be zero. If the solid 

particles are held stationary, then the above boundary conditions translate to  

 0=u  on s∂V . (1.5) 

  

 

Figure 1: Schematic of the physical domain with only one particle. Hatched lines represent the 

volume fV occupied by the fluid-phase and solid fill represents the volume sV of the solid-phase 



such that the total volume of physical domain f s= +V V V . The bounding surfaces of the physical 

domain, solid-phase, and fluid-phase are denoted by∂V , s∂V , and f∂V , respectively. 

 

The averaged equations corresponding to these mass and momentum conservation balances 

are useful in simulations of practical gas-solids flow applications. In the previous section we 

described one statistical approach based on the one-particle distribution function. Here we first 

describe an alternative approach called the Eulerian two-fluid theory because it is more natural to 

derive the averaged equations corresponding to Eq. (1.4) using this approach. The conditional 

expectation of acceleration appearing in the one-particle distribution function approach is then 

related to the mean interphase momentum transfer term in the Eulerian two-fluid theory. 

 

In the Eulerian two-fluid theory phasic averages are defined as follows. If ( , )Q tx is any field, 

then its phasic average
( ) ( , )fQ tx over the fluid volume fV , referred to as fluid-phase mean, is 

defined as: 
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where fI is the fluid-phase indicator function which is equal to one if the pointx lies in the fluid 

phase, and zero otherwise. 

 

The solid-phase mean
( ) ( , )sQ tx is similarly defined. The (unconditional) mixture 

mean ( , )Q tx  is related to the phasic mean by:  

 f s sfQ Q Qε ε= +  (1.7) 

where f ( , )f tIε = x and s ( , )s tIε = x are the volume fractions of the fluid and solid phases, 

respectively. If the flow is statistically homogeneous, there is no dependence onx and spatial 

derivatives are zero. Similarly, if the flow is statistically stationary there is no dependence on t  

and temporal derivatives are zero. 

 

The mean momentum conservation equation (Drew & Passman, 1999; Pai & Subramaniam, 

2009) in the fluid phase is obtained by multiplying the momentum conservation equation (1.4) 

by fI resulting in  
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where 
( ) ( )'' f

i

f

i iu u u= − is the fluctuating component of the fluid velocity field. For steady flow 

with an imposed mean pressure gradient in the fluid phase, it is convenient to decompose the 

pressure gradient term that appears in the divergence of the fluid-phase stress tensor 

as '+=g g g , such that remaining part of the stress tensor jiτ ′ is defined by the expression: 
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For a statistically homogeneous suspension at steady state (statistically stationary flow), the 

average velocity does not depend onx or t, and the unsteady and convective terms on the left 

hand side of Eq. (1.8) do not contribute.  Writing the remaining terms in an integral form, shows 

that the mean pressure gradient term fε g balances the sum of fluctuating pressure and viscous 

stress on the solid particles: 
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In the above equation n j

(s )
 is the normal vector pointing outward from the particle surface into the 

fluid, and the stress tensor is evaluated on the fluid side of the interface. The 

term
( ) ( ) )(s I

ji jnτ δ′ −− x x  appears as the drag contribution Fgm (v sm − vg ) to the fluid-solids 

interaction force Igm in the two-fluid equations derived from a volume-averaging approach 

(Syamlal et al., 1993). For statistically homogeneous flows, the relationships between the one-

particle distribution function approach and the Eulerian two-fluid theory are established in the 

context of a comprehensive probability density function approach to multiphase flows (Pai & 

Subramaniam, 2009). Using the relationships in Pai & Subramaniam (2009), it is easy to show 

that the term on the right hand side of Eq. (1.10) is related to the average force exerted by the 

fluid on the particles (see Eq. (1.2)) as follows: 
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THE IMMERSED BOUNDARY METHOD 

The basic notion of the immersed boundary method is to apply a set of forces on the 

computational grid to mimic the presence of an interface. This has several advantages over 

conventional boundary or body-fitted grids, especially for problems involving moving interfaces. 

First, there is no overhead for grid generation, which can add considerable computational expense 

even for non-deforming geometries. Second, the convergence of the solvers is generally better for 

Cartesian meshes than for unstructured meshes. Third, IBM is intended to be implemented on 

regular Cartesian meshes that require much less storage overhead than general unstructured or 

curvilinear meshes. The primary disadvantage of IBM is the reduced resolution near the interface, 

but this is remedied by adopting adaptive mesh techniques. There are two basic facets of the IBM, 

namely the choice of flow field (i.e. what velocity field do we wish to achieve) and calculation of 

the force itself (i.e. once we decide on the field we wish to achieve, how do we specify the force 

at each time-step). For clarity we will separate these two aspects, dealing with the force 

specification first.  

 

The immersed boundary method was originally developed by Peskin  (Peskin, 1982) as a way 

to incorporate the effect of flexible interfaces into fluid simulations. In that version, the local 

force is obtained from some constitutive relation commensurate with the nature of the interface 

(e.g surface tension in the case of a bubble, Young’s modulus for an elastic membrane) and is, by 

necessity, iterative over a timestep since the location of the interface is not known a priori. This 

method has been applied to a variety of flows, such as bubbles, blood cells and swimming fish. 

The issue with this implementation is that it is not efficient for rigid bodies, since this requires 

driving the stiffness of the interface membrane (and effectively the stiffness of the equations to be 



solved) to infinity. The same is true for the Immersed Interface method (IIM) which is well suited 

to the solution to the flow past deformable bodies (Lee & Leveque, 2003). . 

 

Goldstein (Goldstein, Handler, & Sirovich, 1993) proposed what is essentially proportional-

integral feedback on the force term to produce boundary conditions on a rigid body. The problem 

with this method is the lack of efficiency; due to the need to numerically integrate the force in 

(pseudo-continuous) time over a single time-step, the effective CFL limit was extremely small, 

(O(10
-3

)). Coincident with Goldstein’s work, Mohd-Yusof (Yusof, 1996) developed what is now 

termed the Discrete-Time Immersed Boundary Method (DTIBM). The essential aspect of this 

formulation is the recognition that examination of the discretized-in-time equations leads to a 

straightforward definition of the force at a given point, once we have decided on the required 

velocity field (and hence the velocity required at the point in question).   

 

We now turn our attention to the choice of flow field. The implementations to date can be 

broadly divided into two classes; ghost fluid and numerical boundary layers. In the former, the 

flow field in the region of interest is extrapolated across the interface in such a way as to impose 

the desired boundary condition at the interface. This is the method used in the original 

implementations of Goldstein and Mohd-Yusof, as well as in this chapter. Such an 

implementation is natural in situations where the fictitious flow produced within the rigid body 

does not affect the solution and is easily accounted for. This choice has the advantage that the 

force applied in the fluid region can be zero; that is, the governing equations are unmodified in 

this region. Additionally, the use of the ghost fluid region allows the effect of, for example, 

implicit diffusion operators, to be minimized by forcing linear velocity gradients across the 

interface.  

 

In the latter method, the immersed boundary force applied at the interface is numerically 

smoothed over several grid-points, for numerical stability reasons. As used by Peskin, this is a 

natural implementation, since the flow on both sides of the interface is required for the solution. It 

is possible to use the numerical boundary layer formulation for rigid body problems, as was done 

by Verzicco et. al. (Verzicco, Mohd-Yusof, Orlandi, & Haworth, 2000) where the discrete-time 

formulation of Mohd-Yusof was applied with numerical boundary layers in the fluid side, and 

with exact rigid body fields imposed in the solid.  

 

Solution Approach  

In the immersed boundary method, the mass and momentum equations are solved in the entire 

domain that includes the interior regions of the solid particles as well. The mass and momentum 

conservation equations solved in IBM are   
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respectively, 
f

f

f

µ
ν

ρ
= is the kinematic viscosity, IBMg is the pressure gradient, ·( )= ∇S uu  is the 

convective term in conservative form, andu is the instantaneous velocity field. In the above 

momentum conservation equation, uf is the additional immersed boundary force term that 

accounts for the presence of solid particles in the fluid-phase by ensuring zero slip and zero 

penetration boundary conditions (Eq. (1.5)) at the particle-fluid interface.  

 

In Figure 2, a schematic describing the computation of the immersed boundary forcing is shown. 

The surface of the solid particle is represented by a discrete number of points called boundary 

points, by discretizing the sphere in spherical coordinates. Another set of points called exterior 

points are generated by projecting these boundary points onto a sphere of radius r r+ ∆ , where 

r is the radius of the particle. Similarly, the boundary points are projected onto a smaller sphere 

of radius r r− ∆ and these points are called interior points. In our simulations, r∆ is taken to be 

same as the grid spacing. The immersed boundary force is computed only at the interior points. 

At these points, the fluid velocity field is forced in a manner similar to the ghost cell approach 

used in standard finite-difference/finite-volume based methods. Or more specifically for the case 

of zero solid particle velocity, the velocity field inside the solid particle at grid points close to the 

interface is forced to be exact opposite of the fluid velocity field outside the particle (see Figure 

2). The details of this forcing approach are discussed in Yusof (Yusof, 1996). In Yusof’s original 

implementation, the IB forcing was also computed on the boundary points in addition to the 

interior points. The IB forcing at the boundary points was then interpolated to the neighboring 

grid nodes that could include grid nodes in the fluid phase. This additional forcing leads to 

contamination of the fluid velocity and pressure fields by the IB forcing. In the current 

implementation of DTIBM, we are able to obtain accurate results even with zero forcing at the 

boundary points, avoiding any contamination of the fluid velocity and pressure fields by IB 

forcing. It is noteworthy that the discretization of the sphere in spherical coordinates is 

independent of the grid resolution and hence to some extent, decouples the grid resolution from 

the accuracy with which the boundary condition is imposed. In addition to forcing the velocity 

field, the IB forcing term also cancels the remaining terms in the momentum conservation and, at 

the 1n + time-step, it is given by 
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where 
d

iu is the desired velocity at that location.  

 

Since the immersed boundary force uf is a function of both space and time, its effect on the 

pressure field is accounted by solving a modified pressure Poisson equation given by 
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which is obtained by taking the divergence of the instantaneous momentum conservation equation 

(1.13) and using the mass conservation equation (1.12). 

 

For flow past a statistically homogeneous particle assembly, we solve the IBM governing 

equations by imposing periodic boundary conditions on fluctuating variables that are now 



defined. From the definition of volumetric mean, the velocity field ( , )tu x can be decomposed as 

the sum of a volumetric mean u
V

and a fluctuating component ( , )t′u x  
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V

, (1.16) 

and similar decompositions are written for the non-linear term S , pressure gradient IBMg , and 

immersed boundary forcing uf terms. Substituting the above decompositions in the mass (1.12) 

and momentum (1.13) conservation equations, followed by volume averaging, yields the volume-

averaged mass and momentum conservation equations. Since the volumetric means are 

independent ofx , mean mass conservation is trivially satisfied. The volume-averaged momentum 

conservation equation becomes 
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where it is noted that due to periodic boundary conditions, the volume integrals of convective and 

diffusive terms are zero.  
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Figure 2: A schematic showing the computation of the immersed boundary forcing for a 

stationary particle. The solid circle represents the surface of the particle at r. Open dot shows the 

location of one exterior point at r+∆r (only one exterior point is shown for clarity, although there 

is one exterior point for each interior point) and filled dots show the location of interior points at 

r-∆r where the immersed boundary forcing is computed. For the special case of a stationary 

particle, the velocity at the interior points is forced to be the opposite of the velocity at the 

corresponding exterior points. 

 

 

While mean mass conservation (in the volume-averaged sense) is trivially satisfied, the 

fluctuating velocity field needs to be divergence free  
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Subtracting the volume-averaged momentum conservation equation  from the instantaneous 

momentum conservation equation (1.13) yields the following equation for the conservation of 

fluctuating momentum:  
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Taking the divergence of the above equation and using (1.18) results in the following modified 

pressure Poisson equation for the fluctuating pressure gradient: 
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The conservation equations (Eqs.(1.14) - (1.20)) are numerically solved to yield the flow around 

immersed bodies.  

 

Although the immersed boundary forcing uf ensures zero relative velocity at the particle-fluid 

interfaces, for periodic boundary conditions we need to ensure that the desired fluid-phase mean 

velocity will be attained. This is because unlike in inflow/outflow boundary conditions where the 

flow enters at a specified mass flow rate, there is no such mechanism for periodic boundary 

conditions. Therefore, in order to attain a desired fluid-phase mean velocity
( )

d
f

u , the mean 

pressure gradient 
IBMg

V
is advanced in pseudo-time such that at the thn time step it is given by 
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where ' ψ= ∇g , all quantities in the integrand are evaluated on the fluid side of the fluid-particle 

interface, and the superscript n implies the relevant quantities at the thn time step. This equation 

for the volumetrically averaged pressure gradient is obtained by integrating the IBM momentum 

conservation equation (1.13) over the volume occupied by the fluid-phase. A finite difference 

approximation has been substituted for the unsteady term on right hand side of the above equation 

that drives the volume-averaged fluid velocity to its desired value. Since the immersed boundary 

force term is zero at grid nodes that lie outside the solid particles, the fluid-phase volume average 

of the immersed boundary force term f uI f
V

is zero, thus resulting in zero contamination of the 

fluid pressure and velocity fields. The volume-averaged pressure gradient
IBMg

V
given by above 

equation, and the volume-averaged immersed boundary forcing term uf V
 are used to evolve the 

volume-averaged velocity u
V

by Eq. (1.17). For a statistically stationary flow, the equations are 

evolved in pseudo time until the average quantities reach a steady state, at which point the first 

term on the right hand side of Eq. (1.21) is negligible, and Eq. (1.21) reduces to the numerical 

counterpart of Eq. (1.11). This establishes that the resulting numerical solution to the IBM 

governing equations is a valid numerical solution to steady flow past homogeneous particle 

assemblies.  

 



IBM with direct forcing was developed by Mohd-Yusof (Yusof, 1996) for his doctoral 

dissertation to solve for turbulent flow past a single particle. This code was subsequently 

completely rewritten by the Subramaniam research group at Iowa State University to implement 

the following improvements: 

1. Modification of the forcing to remove the contamination in the fluid  

2. Computation of drag for gas-solid suspensions at high volume fraction by establishing the 

connection with two-fluid theory and one-particle distribution function approaches 

 

 

SIMULATION METHODOLOGY 

We now describe how the physical parameters of the problem—mean flow Reynolds number and 

solid volume fraction—are specified in the simulation. For flow past homogeneous particle 

assemblies, a Reynolds number based on the magnitude of mean slip velocity between the two 

phases is defined as   
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 The objective in direct numerical simulations is to solve the instantaneous mass and momentum 

conservation equations (Eqs. (1.12) and (1.13)) subject to the boundary conditions described 

earlier, in such a way that the resulting volumetric mean slip velocity corresponds to a desired 

Reynolds number. This system can be solved in three different ways, namely: 

1. Specified mean pressure gradient g : In this method (Hill et al., 2001a; Hill, Koch, & 

Ladd, 2001c), a mean pressure gradient along with zero particle velocities are specified 

as inputs. As a result, the volumetric mean velocity evolves by Eq. (1.17) and the steady-

state solution implies a Reynolds number. The drawback of this method is that Reynolds 

number cannot be specified as an input. 

2a. Specified solid-phase mean velocity
( )s

u : In this method the simulations are carried out 

in a laboratory frame of reference wherein the mean velocity u is zero. Therefore, from 

Eq.(1.7), the desired fluid phase mean velocity
( ) ( )s

s(1 )

f sε
ε

= −
−

u u . Substituting 

this expression for desired fluid-phase mean velocity 
( )f

u  in Eq. (1.22) results in an 

expression for 
( )s

u in terms of the Reynolds number and other physical properties. In 

these simulations, the desired solid-phase mean velocity
( )s

u is attained by specifying 

equal velocities to all particles.  

2b. Specified fluid-phase mean velocity
( )f

u : In this method, particles are assigned zero 

velocity. Therefore, from Eq.(1.22), the desired fluid-phase mean velocity
( )f

u is 

known in terms of the input Reynolds number and other physical properties.    



 

The advantage of methods 2a and 2b over the first method is that the desired Reynolds number 

can be specified as an input to the simulation, whereas it is an output in the first method. 

However, there is no relative advantage in choosing between the second and third methods. It is 

important to note that the velocity scale ( ) slip1 s Uε− is the correct scale to use for meaningful 

comparison of drag laws regardless of the simulation approach. 

 

The solid volume fraction sε together with the ratio of computational box length to particle 

diameter /L D  determines the number of solid particles s& in the simulation: 

 

3

s
s

6 L
&

D

ε
π

=  
 

. (1.23) 

 

Numerical Parameters 

 

The ratio of computational box length to particle diameter /L D , the number of solid 

particles s& and the number of configurations/realizationsM are numerical parameters of the 

simulation. Their influence on the numerical convergence of the IBM simulations is discussed in 

the following subsections.  

 

The computational box is discretized using M grid cells in each direction, and this introduces 

a grid resolution parameter mD . The number of grid cells is calculated as  

 m

L L
M D

x D
= =

∆
, (1.24) 

where L is the length of the computational box, x∆  is the size of each grid cell, and mD  is the 

number of grid cells across the diameter of a solid particle. The solution algorithm is advanced in 

pseudo-time from specified initial conditions to steady state using a time step t∆ that is chosen as 

the minimum of the convective and diffusive time steps by the criterion  

 

  

∆t = CFL× min
∆x

u
max

,
∆x2(1− ε

s
)

ν
f












.

 (1.25) 

At the beginning of the simulation
( )

max

fu = u , and as the flow evolves the time step adapts 

itself to satisfy the above criterion.  

 

Estimation of mean drag from simulations 

 

Direct numerical simulation of flow through a particle assembly using the immersed boundary 

method results in velocity and pressure fields on a regular Cartesian grid. The drag force on the i
th
 

particle,
( ) ( ) ( )i i i

d m=F A , is computed by integrating the viscous and pressure forces exerted by 

the fluid on the particle surface. The average drag force on particles in a homogeneous suspension 

for the
thµ  realization is computed as 
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V , (1.26) 

which is obtained by integrating the pressure and viscous fields over the surface of each particle. 

In the last expression of the above equation, the first term is the force on all particles in the 

volume due to mean pressure gradient, the second term is the drag force due to the fluctuating 

pressure gradient field, and the third term is the viscous contribution to the drag force. This 

expression for the drag force is for one realization, and it is then averaged overM independent 

realizations in order to average over different particle configurations corresponding to the same 

solid volume fraction and pair correlation function. The ensemble-averaged drag is  

 { } { }, ,,
1

1
d i d iF F

µ

µ=

= ∑
M

V M VM
, (1.27) 

which converges to the true expectation of the drag force dF (given by Eqs. (1.2) and (1.11)) in 

the limit s& ∞→M . The ensemble-averaged drag force is later reported as a normalized 

average drag force F given by  

 
{ }

Stok s

,

e

d

F
F

=
F

V M , (1.28) 

where Stokes f slip s3 (1 )DUF πµ ε−= is the Stokes drag.  

 

Each numerical parameter must be chosen to ensure numerically converged, accurate, and 

physically meaningful results. Spatial and temporal discretization contribute to numerical error in 

the force on the thi particle that scales asO(∆x p ,∆t q ) , where p and q depend on the order of 

accuracy of the method and the interpolation schemes at the particle boundary. For steady flow, 

the numerical error due to spatio-temporal discretization is solely determined by the spatial 

resolution parameter m/ 1 /x D D∆ = , which must be sufficiently small to ensure converged 

results. For the case where the particle positions are chosen to be randomly distributed, on each 

realization of the flow the computational domain should be chosen large enough so that the 

spatial auto-correlation in the particle force decays to zero. This guarantees that the periodic 

boundary condition does not introduce artificial effects due to interaction between the periodic 

images. For a given solid volume fraction sε , this determines a minimum value of ss& Vε=    . 

The number of multiple independent simulations M  is determined by the requirement that the 

total number of samples 
1

&µ
µ=
∑
M

in the estimate for the average force given by Eq.(1.26) be 

sufficiently large to ensure low statistical error.  

 

Owing to the periodic lattice arrangement of particles in ordered arrays, it is sufficient to solve 

the flow for just one unit cell (i.e., one particle for the simple cubic (SC) lattice, and four particles 

for the face-centered cubic (FCC) lattice). For the special case of ordered arrays, since the 

number of particles is pre-determined, the ratio of computational box length to particle 

diameter /L D is not an independent numerical parameter. For ordered arrays the only numerical 

parameter is mD , which determines the number of grid cells M required to resolve the flow.   

 



Numerical Convergence 

 

Here we establish that the IBM simulations result in numerically converged solutions. The test 

case chosen is steady flow past an ordered array of particles in a lattice arrangement, because for 

this case the only numerical parameter is the grid resolution mD . Although we consider steady 

flows, we also verify that the time step chosen to evolve the flow in pseudo time from a uniform 

flow initial condition does not change the steady values of drag that we compute using IBM. For 

an FCC arrangement of particles ( s 0.2ε = , Re 40= ), Figure 3a shows the convergence of drag 

forces due to fluctuating pressure gradient (open symbols) and viscous stresses (filled symbols) as 

a function of grid resolution mD for two different values of CFL number (0.2 denoted by squares 

and 0.05 denoted by triangles). Figure 3b shows the same convergence characteristics for a denser 

FCC arrangement with a solid volume fraction of 0.4 and Re 40= . In both figures it can be seen 

that the IBM simulation result does not depend on the time step (CFL).  With regard to spatial 

convergence, the figures show that the resolution requirements increase with increasing volume 

fraction. This is because higher local velocities are generated in the interstices between particles 

at higher solid volume fraction. While a minimum resolution of m 40D = is needed for converged 

results at s 0.2ε = , the minimum resolution requirement increases to m 60D = for s 0.4ε = . In 

addition to the dependence of grid resolution on volume fraction, increasing the mean flow 

Reynolds number also requires progressively higher grid resolution. Therefore, for the higher 

Reynolds number cases that are reported later, higher resolutions are used for the volume 

fractions 0.2 and 0.4, so that these cases are also adequately resolved. 
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(a) (b) 

Figure 3: Convergence characteristics of drag force with grid resolution mD . The drag force 

contribution from fluctuating pressure gradient (open symbols) and viscous stresses (filled 

symbols) for FCC arrays (with grid resolution mD ) is shown for two CFL values of 0.2 (squares) 

and 0.05 (triangles). (a) Re=40, 0.2sε = ; (b) Re=40, 0.4sε = . 

 

When studying grid convergence of a numerical scheme it is sometimes useful to calculate the 

order of convergence that is implied by the numerical tests. However, the use of a regular 

Cartesian grid to solve for flow over spheres necessitates interpolation of pressure and viscous 

stresses from the grid to a finite number of particle surface points. For ordered arrays these 

interpolation errors cause the steady drag values to exhibit a weak dependence on the location of 



the particle in the computational box (drag values can differ up to a maximum of 1%). Even for a 

fixed particle location in the computational box, the interpolation error depends on both the 

number of particle surface points and the grid resolution. These non-systematic interpolation 

errors preclude a reliable estimation of the order of convergence of the numerical scheme, which 

is formally at least second-order. Although the non-systematic interpolation errors prohibit the 

reliable quantification of spatial order of convergence, if a relative error is defined based on the 

solution at the finest grid, then a spatial order of convergence in the range 1.5-2 is obtained for 

the above cases. In other IBM studies (Ikeno & Kajishima, 2007), solution on a highly resolved 

unstructured grid is taken as a reference to compare the IBM solutions and convergence rates up 

to second order have been reported.  

  

For the random arrays, in addition to errors arising from finite resolution, errors arise due to 

statistical fluctuations between different realizations and the box length is also an independent 

numerical parameter. Ideally, the effect of each numerical parameter on the numerical error 

should be investigated by varying that parameter while holding the other numerical parameters at 

fixed values. However, the choice of some numerical parameters must satisfy more than one 

requirement, and some error contributions are determined by the choice of more than one 

numerical parameter. Specifically, the choice of L/D is determined by more than one requirement 

(decay of spatial autocorrelation and the need for minimum number of samples in the average 

force estimate), and both L/D and the number of multiple independent simulationsM determine 

the number of samples in the force estimate. These considerations as well as computational 

limitations did not permit the independent variation of numerical parameters. Therefore, a limited 

investigation of numerical parameter variation is presented here. To place this in context, we note 

that to our knowledge this is the most comprehensive study of numerical error and convergence 

for DNS of gas-solid flow.  
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Figure 4: Convergence characteristics of the normalized drag force with box length to particle 

diameter ratio L/D for random arrays at Re=20. Two solid volume fraction values are 

considered: (a) 0.3sε = , (b) 0.4sε = . Four different values of mD are shown: 10 (squares), 20 

(upper triangles), 30 (lower triangles), and 40 (right triangles). Drag values have been averaged 

over 5 multiple independent simulations. &ot all combinations of mD and L/D are shown because 

with a serial code some combinations exceeded computational memory requirements. 

 



While for ordered arrays the box length and number of particles are determined by the volume 

fraction and type of lattice arrangement (SC/FCC), in random arrays these parameters have to be 

carefully chosen. If L/D is too small, then the spatial autocorrelations that are larger than the box 

size will not be captured and the periodic images will interact. For steady flow past random arrays 

( s 0.3ε = , Re 20= ), Figure 4a shows the convergence characteristics of the normalized force 

with box length to particle diameter ratio L/D for four different values of mD equal to 10 

(squares), 20 (upper triangles), 30 (lower triangles), and 40 (right triangles). Figure 4b is the same 

comparison for a denser random arrangement with a volume fraction equal to 0.4. These results 

show that the drag value depends on L/D if the simulation is under-resolved, and the effect of grid 

resolution mD is stronger than that of L/D for the cases considered here. Once the drag values are 

at their grid-converged values, there is no statistically significant dependence for L>6D in these 

cases. The simulations of flow past random arrays that are reported later in this work use higher 

resolutions when the Reynolds number exceeds 100, as shown in Table 1.  

 

In summary, these numerical convergence test results show that the IBM simulations yield 

grid-independent results, and these results are also independent of the choice of time step used to 

advance the solution in pseudo time, provided the stability criterion is met. The tests for random 

arrays also show that the grid-converged results do not exhibit a statistically significant 

dependence on the computational box length for L>6D. However, these specific values for the 

numerical parameters should be treated as tentative because these limited set of tests cannot 

establish sharp limits on the minimum resolution required, and further numerical testing could 

refine these limits. A satisfactory number of MIS should ideally be determined by the 

determining the minimum number of samples for a given level of statistical error in the force 

estimate. However, this quantity is a strong function of Re and solid volume fraction. In the plots 

shown above, we have used 5 MIS for all the cases. While this results in a statistical error that is 

on the order of the other numerical error contributions, further testing is needed to refine this 

requirement. Clearly, the requirements of minimum L/D, minimum mD , and minimumM , 

together dictate a trade-off for a fixed level of computational work. Of these parameters, our tests 

reveal that the numerical error in IBM exhibits the highest sensitivity to grid resolution mD . 

These numerical convergence tests provide useful guidelines in the choice of these parameters 

that approximately balance the error contributions, but further testing is needed for a complete 

error analysis. 

 

VALIDATION TESTS 

Isolated Sphere 

 

The flow over an isolated sphere in an unbounded medium presents itself as the logical validation 

test for any direct numerical simulation approach to gas-solid flow. However, especially for 

simulations that use periodic boundary conditions, this turns out to be a difficult validation test. 

For simulations using periodic boundary conditions, flow through a very dilute simple cubic 

arrangement is taken as a close approximation to flow over an isolated sphere in an unbounded 

medium. Since the simple cubic lattice arrangement is not isotropic, it is known (Hill et al., 

2001b) that the results for drag can depend on the orientation of the flow with respect to the unit 

vectors of the lattice for values of Reynolds number beyond the Stokes flow regime. In contrast, 



there is of course no preferred direction for flow over an isolated sphere in an unbounded 

medium.  
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Figure 5: &ormalized drag force F in a simple cubic array (
4

s 4.0 10ε −×= ) as a function of 

Reynolds number and angle θ between the mean flow and the x- axis in the (x,y) plane. The 

symbols are from the IBM simulations: θ=0 (D), θ=π/16 (□). The solid line is the drag correlation 

for an isolated sphere in unbounded medium (Schiller & &aumann, 1933).  

 

 Figure 5 shows the comparison of the normalized drag force F in a simple cubic array 

(
 
ε

s
= 4.0 × 10−4

) as a function of the Reynolds number from IBM simulations with a well- 

established correlation for an isolated particle in an unbounded medium (Schiller & Naumann, 

1933). The drag computed for mean flow oriented at two different angles (θ=0 (∆), θ=π/16 (□)) 

with respect to the lattice unit vector is shown to illustrate the dependence on flow angle. For 

Re<1 (in the Stokes regime), the normalized drag force is independent of the mean flow angle. 

However, the drag from IBM simulations is about 20% higher than the established correlation. 

The drag computed from IBM is within 4% of LBM simulations of dilute SC arrays using 

periodic boundary conditions. The interactions between the periodic images of the spheres result 

in higher drag values than an isolated sphere. It is expected that as the volume fraction is further 

reduced, the numerical predictions will get closer to the drag law in the Stokes limit. The sphere 

resolution m
D for the simulation shown is equal to 12.8 grid cells. Even more dilute simulations 

will require larger computational grids. 

 

For Re>1, the IBM results are in good agreement with the existing drag law only when the 

mean flow is directed at an angle of π/16 in the (x, y) plane. This observation is consistent with 

the earlier LBM simulations (Hill et al., 2001b)  where the authors argued that for mean flow 

angles close to 0  or π/4, the inertial contributions (or pressure gradient contributions) are reduced 

due to relatively larger wake interactions than for the case of θ=π/16. The lower inertial 

contributions result in a lower value for total drag for those flow angles. For Re<1 the normalized 

drag force value is independent of the mean flow angle because momentum transport is 

dominated by viscous diffusion. Since diffusion is symmetric about a sphere, the mean flow angle 

has no effect on the total drag force in the Stokes regime.  

 

Stokes Flow 



 

Several correlations have been proposed in the literature for the drag force in Stokes flow past 

ordered arrays (SC, FCC, BCC) of spheres. Different analytical and numerical techniques, such 

as analytical solution to the Stokes equations (Hasimoto, 1959), Galerkin methods (Snyder & 

Stewart, 1966; Sorensen & Stewart, 1974), and the boundary-integral method (Zick & Homsy, 

1982), have been used to determine the drag force in Stokes flow past ordered arrays as a function 

of solid volume fraction. Since Zick and Homsy’s results are within 6% of all the other studies, 

and include all three ordered configurations for the entire range of solid volume fraction, their 

values are used in  as a benchmark to compare with IBM simulations. Figure 6 shows that the 

IBM simulations are in excellent agreement with reported values from dilute to close-packed 

limits.  
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Figure 6: Comparison of the normalized drag force as a function of the solid volume fraction εs in 

in Stokes flow past simple cubic and FCC arrays from IBM simulations (open symbols) with the 

results of Zick & Homsy (filled symbols). 

 

The grid resolution in the IBM simulations for the FCC cases is 25.24 grid points per particle 

diameter for the minimum volume fraction of 0.01, and 104 grid points per particle diameter for 

the maximum volume fraction of 0.698. For the simple cubic cases, m
D is equal to 40.08 for the 

minimum volume fraction of 0.01, and 149 for the maximum volume fraction of 0.514. 

 

The validation tests described in this section show that the IBM simulations faithfully 

reproduce many standard results published in the literature. In cases where there are differences, 

these are within acceptable limits, and are mostly due to the higher resolution used in the IBM 

simulations. Having established that the IBM simulations are numerically convergent and having 

validated them in standard tests, we now use IBM to study drag in steady flow past ordered and 

random arrays.  

 

ORDERED ARRAYS 

Ladd (Ladd, 1994b) and Hill et al. (Hill et al., 2001b) have studied steady flow past ordered 

arrays of particles using LBM simulations. Our purpose in revisiting this problem is two-fold. 

IBM simulations of flow past ordered arrays serve to further validate the method for cases where 

we can compare with published data of Hill et al. Secondly, we have more comprehensively 



explored the parameter space defined by ( Re , 
 
ε

s
), especially the low volume fraction region, 

with higher numerical resolution than reported thus far in the literature. The dilute cases are more 

computationally demanding, and have therefore not received as much attention. However, the 

behavior of the drag force in the dilute limit is important because it defines a limiting behavior 

that drag correlations are typically constrained to satisfy. Our IBM simulations in the dilute 

regime reveal some new insights into the correct limiting behavior that should be imposed as a 

constraint on drag correlations.  

 

 Figure 7 shows the behavior of the normalized drag force obtained from IBM simulations 

(open symbols) for steady flow past a SC arrangement of particles as a function of Reynolds 

number, for volume fractions ranging from very dilute to close-packed limits. Also shown in the 

same figure is the comparison (wherever the data is available) with the LBM simulations (filled 

symbols) of HKL. Figure 8 shows the same comparison for the FCC arrangement. As both 

figures show, the IBM and LBM simulations are in excellent agreement. These results serve to 

further validate the use of IBM for simulation of flow past homogeneous particle assemblies.  

 

 

Figure 7: Comparison of the normalized drag force F for SC arrangement obtained from IBM 

(open symbols) with the LBM simulations (filled symbols) of HKL. The solid line is the drag law 

for a single particle in an unbounded medium. The flow is directed along the x- axis. 

 

The solid line in Figures 7 and 8 is the drag on a single particle in an unbounded medium from 

the Schiller and Naumann correlation. Comparison with the single sphere drag law (solid line) 

reveals that for moderate to high Reynolds numbers, the dilute volume fractions in ordered arrays 

experience lesser drag than the drag on a single particle. As observed earlier for the dilute SC 

array (see  and its discussion), and also studied comprehensively in HKL, the normalized drag 

force in ordered arrays is a function of the flow angle. Therefore, in order to avoid the additional 

parametrization of the problem by flow angle, all the simulations have been performed for the 

case where the mean flow is directed along the x- axis. However, as shown in HKL, a change in 

the flow angle can result in drag values that differ by as much as 200-300% from the zero flow 

angle case. The main conclusion to be drawn from these simulations is that the single sphere drag 

law is not the asymptotic limit of the dilute ordered arrays data. As we shall see in the next 



section, the same is true for random arrays also, although they do not exhibit the strong 

dependence on flow angle characteristic of ordered arrays.  

 

 

 

Figure 8: Comparison of the normalized drag force F for FCC arrangement obtained from IBM 

(open symbols) and with the LBM simulations (filled symbols) of HKL. The solid line is the drag 

law for a single particle in an unbounded medium. Flow is directed along the x- axis.  

 

RANDOM ARRAYS 

Fixed assemblies of randomly distributed particles are closer to the freely evolving suspension 

problem that we seek to model than ordered arrays. The particle positions are initialized by first 

allowing them to evolve to an equilibrium state following elastic hard-sphere collisions.  

 

We have performed IBM simulations with numerical resolutions comparable or higher than 

those used in HKL and BVK, again with an emphasis on characterizing the dilute limit, which is 

used to as a limiting case constraint to determine drag law coefficients. Later in this section, the 

numerical parameters used in the current IBM simulations are compared with those used in the 

LBM simulations of HKL and BVK. In the following, the principal IBM results and the 

underlying physical mechanisms they reveal are discussed. Implications of the results for drag 

laws are then summarized. 

 

 

Dilute Arrays 

 

 Figure 9 shows the dependence of normalized drag force on the Reynolds number for a random 

configuration at a dilute volume fraction of 0.01. Symbols are the IBM simulations, with square 

symbols for the mean flow directed along the x- axis, and triangles for the mean flow directed at 

an angle of /16π in the x-y plane. Solid and dashed-dot lines are the monodisperse drag laws 

from LBM simulations of HKL and BVK, respectively, and the dashed line is the single sphere 

drag law of Schiller and Naumann.  



 

Figure 9: &ormalized drag force F vs Reynolds number for a random arrangement of particles at 

solid volume fraction equal to 0.01. Symbols are the IBM simulations: squares denote the case 

where the flow is directed along the x- axis; triangles denote the case where the flow is directed 

at an angle of /16π in the x-y plane.  

 

Comparison of the IBM simulations with existing monodisperse drag laws of HKL and BVK 

shows an excellent match in the Stokes regime and at low Re, but differences as high as 100-

200% in the moderate and high Re regime. HKL (Hill et al., 2001a) simulated such dilute volume 

fractions only for the Stokes regime, but due to the coarse resolution of less than 2 lattice nodes 

for particle diameter they did not simulate higher Reynolds numbers for this volume fraction. 

BVK did not simulate any case for s
0.1ε ≤ . In HKL it is noted that due to the approximate 

approach used to obtain the inertial contribution (denoted by 3
F in their study) to the total drag, 

their drag law is a good estimate of the actual drag force over the entire range of Reynolds 

number only for relatively high solid volume fractions. This is a plausible explanation for the 

departure of IBM simulations from the HKL drag law. The departure of IBM simulations from 

BVK’s monodisperse drag law is attributed to the incorrect constraint imposed on their drag law 

to the single-sphere drag correlation at infinite dilution. The BVK drag law assumes that the drag 

in random homogeneous suspensions at infinite dilution (i.e., s
0ε → ) should tend to the drag on 

an isolated particle. From both IBM and LBM simulations, it is clear that this assumption does 

not hold true even at the moderately dilute volume fraction of 0.01.  

 

At low Re, viscous terms that are local (short range) dominate. Since the viscous forces are 

short ranged, it is reasonable to expect that at infinite dilution and low Re, the normalized drag 

force will approach that of single-sphere drag (i.e., 1F → as s
0ε → and Re 0→ ). As the 

Reynolds number increases, the contribution from inertial terms dominates the viscous effects, 

and since pressure obeys an elliptic equation these are long range (nonlocal) interactions. For 

moderate to high Reynolds numbers flow past random arrays, even for fairly dilute solid volume 

fractions the simulation data do not support the assumption of constraining the drag law to 

approach that of single-sphere.  

 

Similar to the observations for ordered arrays (Figures 7 and 8), the drag force on dilute 

suspensions for moderate to high Reynolds numbers is less than the drag force experienced by an 

isolated particle in an unbounded medium. However, unlike in ordered arrays the drag force in 



random arrays is not dependent on the flow angle due to isotropy of the particle configuration. 

For ordered arrays, the strong influence of flow angle on the drag force at moderate to high 

Reynolds numbers is attributed by HKL to the different length scales at which the inertial 

contributions interact. The distribution of neighbor particles in ordered arrays is anisotropic, and 

the pair correlation function is sharply peaked at the lattice points. However, in the random 

particle configurations generated by elastic hard-sphere collisions, the pair correlation is 

isotropic. Therefore, the drag force is insensitive to flow angle for all Reynolds numbers in 

random arrays. 

 

Moderately Dilute to Dense Arrays 

Figure 10 shows the comparison of normalized drag force in random arrays for volume fractions 

equal to 0.1 and 0.2 obtained from IBM simulations (open symbols) with the existing 

monodisperse drag laws of HKL and BVK.  shows the same comparison for volume fractions 

equal to 0.3 and 0.4. It can be seen that IBM simulations are in excellent agreement with HKL’s 

drag law for Re up to 100, which is nearly the upper limit of Reynolds number simulated by 

HKL. The extension of their drag law to higher Re does not agree well with IBM simulations as 

the solid volume fraction is reduced. This is attributed to the observation made in HKL that their 

drag law is a good estimate of the actual drag force over a wide range of Reynolds number only 

for relatively high solid volume fractions. 
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Figure 10: Comparison of the normalized drag force F for random arrays at volume fractions 

equal to 0.1 and 0.2 from IBM simulations (open symbols) with the monodisperse drag laws of 

HKL and BVK.  
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Figure 11: Comparison of the normalized drag force F for random arrays at volume fractions 

equal to 0.3 and 0.4 from IBM simulations (open symbols) with the monodisperse drag laws of 

HKL and BVK.  

 

Numerical Parameters and Resolution 

 

 

Choosing the numerical resolution for random arrays or a fixed level of computational work 

should be based on an optimal combination of box-size and grid resolution. Table 1 compares the 

numerical resolutions for different volume fractions used in our IBM simulations with those used 

in LBM simulations of HKL and BVK. It is noted that not all choices of the numerical parameters 

for IBM are in the “resolved” range as determined by our limited set of numerical convergence 

tests. However, as noted earlier, these tests are themselves not comprehensive, and so ultimately 

the choice of numerical parameters reflects an attempt to balance various contributions to the 

numerical error. Given the relatively low sensitivity of the mean drag force to L/D ratio in IBM, 

we have used values from past LBM simulations as a guideline, choosing higher grid resolution 

over larger box size in some of our IBM simulations.  

 

The numerical resolutions for HKL that are reported in Table 1 are those used for the 

maximum Reynolds numbers and are taken from Table 1 in (Hill et al., 2001b). For Stokes flow, 

HKL have used similar numerical resolution for s
0.1ε ≥ . However, for very dilute volume 

fractions, very coarse resolutions of less than 2 lattice nodes across a particle diameter have been 

used. In BVK, a constant resolution of 17.5 lattice units across a particle diameter was used 

for s
0.2ε ≤ , and for higher volume fractions, their results were obtained by averaging over two 

resolutions of 17.5 and 25.5 lattice units. Therefore, in Table 1, we have used the average value of 

21.5 lattice units to report their resolutions for s
0.3ε ≥ . In both the studies, random 

configurations for volume fraction less than 0.1 were not simulated for the entire range of 

Reynolds numbers. So there is no numerical resolution comparison for s
0.01ε = .  Table 1 shows 

that the IBM simulations are consistently better resolved in terms of the number of particles, grid 

resolution, and the box-size. BVK performed greater number of MIS but the scatter in IBM data 

does not point to a need for such high number of MIS. Therefore, normalized drag values 

averaged over 5 MIS are reported here. 

  



s
&  M  m

D  /L D  
s

ε   
Re < 100 Re > 100  Re < 100 Re  > 100 Re < 100 Re  > 100 

HKL - 
 

 
- - 

BVK -  - - 
0.01 

IBM 64  13 5 10  20 15  9 

HKL 16 5 9.6 4.38 

BVK 54 20 17.5 6.6 0.1 

IBM 80 41 5 20 30 7.5 6 

HKL 16 5 17.6 3.47 

BVK 54 20 17.5 5.2 0.2 

IBM 161  34 5 20  40 7.5  4.5 

HKL 16 5 17.6 3.06 

BVK 54 20 21.5 3.07 0.3 

IBM 71 26 5 30  50 5 3.6 

HKL 16 5 33.6 2.73 

BVK 54 20 21.5 4.13 0.4 

IBM 95  20 5 30 60 5  3 

Table 1: Comparison of the numerical resolutions used for random arrays in IBM simulations 

with the past LBM simulations of HKL and BVK. For each entry, first and second rows 

correspond, respectively, to the LBM simulations of HKL and BVK, and the third row 

corresponds to the current IBM simulations.  For the IBM simulations, different numerical 

parameters are used for Re 100≤ and Re 100> . These are shown in two separate columns.    

 

 

Computational Cost  

The computational cost associated with IBM simulations of flow past fixed assemblies of 

monodisperse particles performed using a serial code is discussed in this section. All the 

simulations are performed on an AMD Opteron cluster with 148 compute nodes. The compute 

nodes consist of 2.4 GHz dual core dual processors. The processor type is AMD 2800 Opteron 

with a peak performance of 4.8 Gigaflops.  

At a given volume fraction and Reynolds number, the simulation time for the mean particle 

drag to reach steady state is denoted simΤ and can be written as: 

 ( ) ( ) ( )sim s s s
ˆ Re, Re,M &ε ε εΤΤ = Τ × × . 

In the above equation, Τ̂ is the computational cost per grid cell per time step, M denotes the 

number of grid cells and &Τ is the number of time steps taken for the mean drag to reach a steady 

state.   

The computational cost per grid cell per time step Τ̂ is independent of the Reynolds number and 

depends only on the volume fraction. In Table 2, the values for Τ̂ are reported in microseconds 

for various volume fractions. It can be seen from Table 2 that Τ̂ increases with volume fraction. 

The number of grid cells M required for a well resolved simulation also depends on the volume 



fraction and Reynolds number as shown in Table 1. From the values of optimal L/D and Dm 

given in Table 1, the number of grid cells can be calculated using: 
3

m

L
M D

D

 =  
 

. 

It should be noted that the number of time steps &Τ that is required for the average drag on the 

particles to reach a steady state also depends on the physical parameters of the problem (solid 

volume fraction and Reynolds number). Typically, it is observed that at a given Reynolds 

number, dilute particle assemblies take more time to attain steady state than the denser ones. And 

at a given volume fraction, suspensions at higher Reynolds numbers take longer to attain steady 

state. 

 

sε  Τ̂ ( sµ ) 

0.01 4.612 

0.1 5.033 

0.2 5.693 

0.3 5.745 

0.4 6.071 

Table 2: Computational cost per grid cell per time step for IBM simulations of flow past fixed 

assemblies of monodisperse particles at various volume fractions.   

 

Summary 

IBM simulations show an excellent match with the drag correlations proposed by HKL and 

BVK for low Reynolds number for both dilute and moderately dense random arrays. However, 

the IBM simulations show a significant departure from these correlations at higher Re, and for 

dilute cases. The drag law proposed by HKL is stated to be more reliable for all Reynolds 

numbers only at higher volume fraction. The BVK drag correlation is proposed based on a fit to 5 

drag values over a wide range of Reynolds number, and their simulations appear to be susceptible 

to numerical resolution errors. For a given volume fraction, they used a constant resolution of the 

particle diameter to simulate Reynolds numbers ranging from 21 to 1000. As the volume fraction 

is increased, the number of grid/lattice nodes in the gaps between the spheres decrease and a 

progressively higher grid resolution is required. In the HKL study the particle resolution was 

increased from 9.6 lattice units per particle diameter for the lowest volume fraction of 0.1 to 41.6 

lattice units for the highest volume fraction of 0.641, which is a four-fold increase. However, in 

the BVK study the particle resolution increased by only a fraction for a wide volume fraction 

range of 0.1-0.6. The IBM simulations suggest that a more complete parametric study at high 

resolution could significantly revise these existing drag laws. 

 

 

 

ASSESSMENT OF IBM FOR DRAG LAW FORMULATION 

Simulations of steady flow past homogeneous particle assemblies using IBM reveal that 

fundamentally differing computational approaches to gas-solids flow are in remarkably good 

agreement for a wide variety of test cases. Overall this is strong evidence of the consistency 



between different computational approaches to the problem of drag law formulation in gas-solids 

flow, which is difficult to study through experiment. However, all computational predictions of 

drag in gas-solids flow are subject to uncertainties arising from numerical error, and should be 

interpreted as accurate only within 5%. In the following we compare and contrast the IBM 

approach with LBM, which is a popular computational approach for gas-solids flow.  

 

While IBM solves the continuum Navier-Stokes equations, LBM solves for the discrete one-

particle velocity distribution function whose evolution is described by the lattice Boltzmann 

equation (He & Luo, 1997). It is useful to think of LBM as a solution to the lattice Boltzmann 

equation, which is obtained by Hermite-Gauss quadrature of the modeled Boltzmann equation. 

LBM fundamentally differs from continuum solutions to Navier-Stokes equations like IBM 

because it directly solves for a discrete form of the velocity distribution function at the molecular 

level. From the LBM solution the hydrodynamic mean fields such as fluid velocity and pressure 

can be calculated. Since LBM operations are local in physical space, it avoids solving the elliptic 

pressure Poisson equation that is needed in incompressible continuum flow solvers. This paves 

way for efficient parallelization of LBM, which has opened door to solving realistic flow 

problems (Chen & Doolen, 1998). 

  

However, there are some issues worth considering when using LBM for gas-solids suspension. 

The restriction of molecular velocities to discrete values on a lattice is now known to be 

unnecessary, and even undesirable for many flow problems, especially in multiphase flow (Fox, 

2008). Another feature of LBM is that it always results in a compressible flow solution, and as a 

result the solution of incompressible flow at high Reynolds numbers is challenging. In order to 

reduce the errors due to compressibility effects at higher Reynolds numbers, the viscosity of the 

fluid has to be reduced (Ladd, 1994a, 1994b).  

 

When we consider suspension flows, some very important differences arise between IBM and 

LBM. In LBM a spherical particle is represented by a stair-step lattice approximation, i.e., the 

surface is represented by a set of lattice sites closest to the input diameter 0D . Due to this stair-

step representation of the particle surface, the exact value of the particle diameter that appears in 

the LBM drag law is not specified a priori. Furthermore, the bounce-back scheme used to 

implement the no slip boundary condition at the particle-fluid interface does not result in a zero 

velocity contour coincident with a stationary sphere boundary. Therefore, in LBM the drag 

computed directly from the fluid stress at the particle surface does not correspond to the drag on a 

sphere of diameter 0D . The drag values in LBM simulations are assumed to correspond to an 

effective hydrodynamic diameter hD  that is unknown a priori. The hydrodynamic diameter hD  is 

obtained a posteriori by calibrating the LBM simulations against the analytical solution of 

Hasimoto (Hasimoto, 1959) for Stokes flow in a dilute SC arrangement of spheres. This 

hydrodynamic diameter depends on the fluid viscosity as well as the particle size. Therefore, a 

calibration curve is needed in LBM for every choice of kinematic viscosity and particle 

diameter 0D . This is a serious limitation for a DNS calculation. In contrast, in IBM the particle 

surface is represented as a sphere. The fluid stress on the particle surface is calculated directly 

from the flow fields with no intermediate calibration procedure. Therefore, IBM is a first-

principles, physics-based true DNS approach for simulation of gas-solid flows.  

 



It is also interesting to note that the drag on the particle reported using 0D gives first order 

convergence whereas drag reported using hD results in approximately quadratic convergence 

(Ladd & Verberg, 2001). However, this convergence rate is not independent of the kinematic 

viscosity of the fluid. Even though the calibration of hydrodynamic diameter is only done for a 

single sphere, the same calibration is used for simulating dense ordered suspensions in the Stokes 

regime (Ladd, 1994a, 1994b) as well as random arrays at higher Reynolds number (Hill et al., 

2001a; van der Hoef et al., 2005).  

 

LBM is a highly efficient and robust solution methodology for gas-solids flow. Overall, it 

appears that LBM results for mean drag are relatively insensitive to grid resolution when 

compared with IBM. However, this insensitivity of the LBM solution to grid resolution should be 

carefully interpreted because LBM yields stable solutions even when the flow is highly under-

resolved. For instance, (Beetstra et al., 2007) show that the drag force for a dense random packing 

of 0.5 at Reynolds number equal to 1049 is insensitive to the grid resolution in the range 10 to 50 

lattice units per particle diameter. However, for these grid resolutions it is clear that the boundary 

layers around the particles cannot be resolved at such a high Reynolds number. Some studies also 

report greater sensitivity of LBM to grid resolution. For example, in the monodisperse 

simulations of (van der Hoef et al., 2005) at a volume fraction of 0.5 in the Stokes flow regime, a 

strong dependence of the drag force on the grid resolution and kinematic viscosity is observed.  

 

The sensitivity of IBM results to grid resolution has already been discussed, and we find that 

the IBM results for the surface viscous stress show the correct increasing trend with increasing 

grid resolution as the velocity gradients are better resolved. If IBM is used to simulate high 

Reynolds number flows with insufficient resolution (e.g., Re>500 with grid resolution in Table 

1), the solution becomes unstable because of the non-dissipative second-order upwind schemes 

that have been incorporated for high accuracy. This informs the IBM user that higher grid 

resolution should be employed to obtain stable and accurate solutions. 

 

From the preceding discussion we can see that IBM has some unique advantages in solving 

gas-solids flow problems that derive from its solution approach to the continuum Navier-Stokes 

equations. By virtue of its implementation into structured Cartesian grid solvers, it incurs minimal 

increase in computational cost with increasing number of particles. To give a rough idea of the 

order of magnitude of the increase in computational cost, the increase is only about 25% going 

from 2 particles to 97 particles, but the exact value depends on the Reynolds number and volume 

fraction. The results presented in this chapter show that IBM yields numerically convergent 

solutions to important hydrodynamic problems in gas-solids flow, which compare well with many 

established results in the literature. We also find that this powerful tool is capable of giving 

additional insight into the important limiting case of steady flow past dilute random arrays. Also a 

more thorough exploration of the volume fraction-Reynolds number parameter space suggests 

significant changes to existing drag correlations may be required. In the next section we outline 

future directions for IBM as a computational method for solving gas-solids flow problems. 

 

FUTURE DIRECTIONS 

 



Future directions for the use of IBM as a DNS approach for gas-solids flow can be classified into 

two broad categories: (i) applications of the IBM approach described in this work to other gas-

solids flow problems, and (ii) development of the IBM formulation for other gas-solids flow 

problems.  

 

Other applications of the IBM approach 

The IBM approach described in this work can be used to quantify the terms that appear in the 

second moment equations that derive from the transport equation of the one-particle distribution 

function (Eq. (1.1)). Preliminary work in this direction is already in progress, and our initial 

studies indicate that such calculations will require the simulation of freely moving suspensions. In 

these calculations the particles need to evolve by the hydrodynamic force that the fluid exerts 

through pressure and surface viscous stresses. Particle collisions also need to be accounted for, 

and for dense suspensions it is appropriate to use the discrete element method based on the 

spring-dashpot soft-sphere model (Cundall & Strack, 1979).  

 

In gas-solids suspension flows, the problem of segregation of unlike particles (differing in size 

or density) is of great practical interest. The IBM approach described here can be easily extended 

to simulate polydisperse assemblies of particles, and work is ongoing to quantify drag laws for 

polydisperse gas-solids flow using IBM.  

 

It is well established in the literature that gas-solids riser flows exhibit particle clustering 

effects (Collins & Keswani, 2004; Heynderickx, Das, De Wilde, & Marin, 2004; Knowlton, 

Karri, & Issangya, 2005; Krol, Pekediz, & de Lasa, 2000; Wylie & Koch, 2000). Also 

experiments (Moran & Glicksman, 2003) have shown that gas-phase turbulence interacts 

differently with particle clusters, than with individual particles. The IBM method described here 

has been modified to simulate an inflow-outflow boundary condition to study the influence of 

different particle arrangements (uniform and clustered) on upstream gas-phase turbulence (Xu, 

2008). It should be mentioned that the current computational power only allows for DNS of 

simple flows, such as flow past homogeneous assemblies considered in this study. Application of 

DNS to device scale problems is not envisaged because of the high computational cost arising 

from the large range of scales. 

 

Extensions to the current IBM formulation 

The principal extensions to the IBM formulation lie in the areas of (a) generalizing boundary 

conditions, (b) extending the equation set to include other physical effects, such as transport of 

chemical species and heat transfer, and (c) improving the solution procedure. The IBM approach 

described here can be generalized to incorporate arbitrary boundary conditions and to include 

complex geometries. 

 

The transport of scalars, such as chemical species or temperature, in gas-solids flow is also a 

problem of practical importance. The IBM approach can be applied to the problem of transport of 

a passive scalar by a relatively easy augmentation of the existing equation set. This extension is 

also in progress and preliminary results show that IBM is a versatile tool that can be used to study 

heat and mass transfer in gas-solids flow as well. 

 



The solution procedure employed in this work can be improved by incorporating recent 

advances in differencing the pressure equation that have been derived in the context of immersed 

interface methods. This differencing formula accounts for a discontinuous jump in the pressure 

across the solid-fluid interface (Xu & Wang, 2006, 2008 and Lee & Leveque, 2003). 

 

Parallelization strategy 

A major advantage of the immersed boundary method is its capability to solve for flow over 

complex geometries on a uniform Cartesian grid. Efficient domain decomposition algorithms for 

Cartesian topologies are provided in almost all the standard MPI implementations – an advantage 

of Cartesian topologies compared to body-fitted meshes where one has to rely on third-party 

libraries like METIS for domain decomposition. The dominant communication costs in any 

parallel implementation depend upon the order of accuracy of the discretization schemes. For 

example, a second-order central differencing scheme requires communication of the solution on 

the first layer of grid nodes that lie adjacent to the partition boundaries. In the parallel 

implementation of IBM, no special distribution of the particles among the processors is required 

as the particles are assigned to processors based on their spatial locations. A particle that lies on a 

partition boundary is partitioned appropriately and the velocity and pressure fields that are 

exchanged after every time step are sufficient to calculate the immersed boundary force acting on 

the portion of the particle that lies within a processor. The immersed boundary field is 

communicated at each time step similar to communications for pressure and velocity fields. 

Therefore, as discussed before, the parallel implementation preserves the scale up of 

computational cost with the number of particles as the communication overhead incurred for 

forcing field is minimal.  

 

 

 

CONCLUSION 

 

IBM is a powerful and efficient computational method for direct numerical simulation of gas-

solids flow. This contribution connects the quantities computed from DNS using the IBM 

approach with the interphase momentum transfer term arising in theoretical approaches to gas-

solids flow. This correspondence is described at different levels, starting from the one-particle 

distribution function and leading naturally to the averaged equation in that approach. An 

important connection of IBM quantities with two-fluid theory is also established. The numerical 

convergence of IBM is established and its performance in various validation tests is described. It 

is shown that IBM simulations reproduce known results for the average drag in Stokes flow past 

ordered arrays. For random arrays, the IBM results reveal interesting insights in the dilute limit, 

and suggest changes to existing drag laws may be required following comprehensive exploration 

of the Reynolds number-solid volume fraction parameter space. The IBM approach is versatile, 

and can be extended to include effects of gas-phase turbulence, polydispersity in the size 

distribution of solid particles, and transport of chemical species and heat due to fluid flow. 
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