

*Presenting author: Timothy B. Morgan

2014 Graduate Research Conference
Department of Mechanical Engineering, Iowa State University

 March 7, 2014

RAPID DEVELOPMENT OF NATURAL USER INTERACTION USING

KINECT SENSORS AND VRPN

Timothy B. Morgan
1
*, Diana Jarrell

2
, Theodore J. Heindel

3
, Judy M. Vance

4

Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA

1
tbmorgan@iastate.edu,

2
djarrell@iastate.edu,

3
theindel@iastate.edu,

4
jmvance@iastate.edu

Research Program: Virtual Reality

Introduction
The difficulty of integrating input devices is not new. In

the past, as new input devices became available, custom
software was needed to implement the features of the new
devices into existing applications. Furthermore, different
applications using the same device often use the device in
different ways. For example, different programs require
different voice recognition vocabularies. In a worst-case
scenario, these differences are hard-coded into the software,
preventing non-programmers from changing the interaction.

One advance that has helped reduce device
implementation problems is the virtual reality peripheral
network (VRPN) [1]. VRPN provides a consistent interface
for the most common types of inputs in virtual reality. Due
to the advantages of VRPN, programmers have implemented
VRPN servers for many low cost input devices [2,3].

The Kinect is another low cost input device that supports
non-contact natural user interaction (NUI) in virtual
environments. The Flexible Action and Articulated
Skeleton Toolkit (FAAST) by Suma et al. provides a VRPN
server for the Kinect [4]. While this is a significant step
towards providing easy to use interaction, it does not
provide access to one of the major abilities of the Kinect,
namely the microphone array for voice recognition.
Furthermore, FAAST does not support the data integration
of multiple Kinects. This paper describes the development of
a software tool to support rapid development of NUI using
the Kinect through VRPN.

Implementation
The server was implemented using the official Microsoft

Kinect for Windows SDK version 1.8 and the Microsoft C#
.NET. To implement VRPN in the server, VanderKnyff’s
VrpnNet library was used [5]. However, a custom version
was compiled to fix a bug that was discovered while
implementing the server (this build is available at
https://github.com/vancegroup).

Due to the limited programming experience of many
virtual reality users, the Kinect via VRPN tool was designed
to operate from a GUI (Fig. 1). Additionally, voice
recognition was implemented using the Microsoft Speech
Platform SDK v11. This tool provides a programmatic
interface to define words and grammar, and returns

recognized events with probabilities that a word has been
detected. In addition to the voice recognition itself, beam
forming and audio source estimation were implemented to
enhance the usefulness of the voice recognition.

Multiple Kinect Skeleton Data
Another key feature is native support for the use of

multiple Kinect sensors. In order to integrate skeleton data
from multiple sensors, all the skeleton data from all the
Kinects must first be transformed into a common coordinate
system. The choice of coordinate systems is arbitrary, so we
chose the direction of the y-axis to be directly opposing
gravity, leaving the yaw and translation of the coordinate
system user adjustable. This approach allows the pitch and
roll of the Kinect to be automatically calibrated. This is
achieved by using the Kinect’s internal accelerometer to
determine the direction of gravity and rotate the Kinect
coordinate system such that the gravity vector is aligned
with the negative y-axis [2].

Once all the skeletons are transformed into a common
coordinate system, the positions of each skeleton (the center
of mass of the skeleton, not each individual point) are
compared with all the skeletons from the other Kinects.
Once skeletons from the different Kinects are determined to
be from the same person, the joint positions are determined.
This process is repeated for all skeletons, from all Kinects,
until a merged list, which represents each person in the
measured area as a unique skeleton, is created.

VRPN Latency
There has also been some concern over the latency that

the VRPN interface might introduce into the end application.
To test latency, a simple VRPN client was written that
records the time at which each VRPN message is received.
For the testing of voice recognition latency, a user speaks a
given word, and then clicks an onscreen button to record the
time of the end of the word.

To create a realistic vocabulary for testing, a list of 100
words was generated by selecting 100 random words from
the text of Mark Twain’s Adventures of Huckleberry Finn,
as obtained from Project Gutenberg [6]. All 100 words were
required to meet the following conditions: 1) four letters in
length or longer, 2) not a proper noun 3) no two words on
the list could be homophones, 4) not a contraction.

https://github.com/vancegroup

As shown in Fig. 2, the total latency of voice commands
averaged 912.4 ms, of which 912.0 ms was the latency of
the voice recognition engine itself. The voice command
measurement has an error of ±126 ms and the VRPN
measurement has an error of ±0.5 ms. The latency of the
voice engine itself does not appear to be dependent on the
size of vocabulary for the range tested. The average VRPN
latency is increased from 0.4 ms to 0.8 ms from one to one
hundred words, largely due to the increase in the size of the
settings list that must be parsed prior to transmitting the
command. However, given that in all cases, the latency is
less than 0.1% the latency of the voice recognition engine
itself, the latency due to the VRPN implementation is
considered insignificant.

Discussion
The critical measure of success for the Kinect via VRPN

software is whether or not it allows novice users to develop
user interactions faster than with existing methods. In one
example, a pre-existing virtual assembly software was used,
which had been built prior to the decision to use the Kinect
as an input device. Through the use of the Kinect via VRPN
software, the developer was able to build Kinect-based user
interaction (both voice and skeleton tracking) for the virtual
assembly software in 20 minutes, without changing any code
in the virtual assembly software.

Another example where the Kinect via VRPN software
has found success is in virtual reality education. For a class
project on the subject of virtual environments, a student with
limited programming background was working to develop
software to help young children learn English. In this case,
the student was able to implement voice recognition in the
project using the Kinect via VRPN implementation after
being provided only a single, simple example.

Conclusion
This development effort has resulted in a simple tool for

implementing natural user interaction in virtual reality using
multiple Kinects and voice recognition. The latency added
by using VRPN to transmit information has been shown to
be minimal compared to the underlying latency of the Kinect
sensor. All future improvements will be made publicly
available at the project website
(https://github.com/vancegroup).

Acknowledgments
The authors would like to thank Patrick Carlson and

Ryan Pavlik for their many fruitful discussions about the
implementation of this project and their work recompiling
VRJuggler to support the VRPN text device.

References
[1] Taylor R. M. I., Hudson T. C., Seeger A., Weber H.,

Juliano J., and Helser A. T., 2001, “VRPN: A Device-
Independent, Network-Transparent VR Peripheral
System,” VRST ’01: Proceedings of the ACM

Symposium on Virtual Reality Software and Technology,
Alberta, Canada, pp. 55–61.

[2] Pavlik R. A., and Vance J. M., 2010, “A Modular
Implementation of Wii Remote Head Tracking for
Virtual Reality,” ASME 2010 World Conference on
Innovative Virtual Reality, ASME, Ames, Iowa, USA,
pp. 351–359.

[3] Pavlik R. A., 2013, “rpavlik/razer-hydra-hid-protocol,”
GitHub [Online]. Available:
https://github.com/rpavlik/razer-hydra-hid-protocol.
[Accessed: 01-Sep-2013].

[4] Suma E. A., Lange B., Rizzo A. “Skip,” Krum D. M.,
and Bolas M., 2011, “FAAST: The Flexible Action and
Articulated Skeleton Toolkit,” 2011 IEEE Virtual Reality
Conference, IEEE, Singapore, pp. 247–248.

[5] VanderKnyff C., 2008, “VrpnNet 1.1.1” [Online].
Available: http://wwwx.cs.unc.edu/~chrisv/vrpnnet.
[Accessed: 15-Mar-2012].

[6] Twain M., 1885, Adventures of Huckleberry Finn,
Project Gutenberg.

Figure 1: The main page of the GUI.

Figure 1: The main page of the GUI.

Figure 2: Latency of the voice recognition by

vocabulary size.

https://github.com/vancegroup

	Rapid Development of Natural User Interaction using Kinect Sensors and VRPN
	Introduction
	Implementation
	Multiple Kinect Skeleton Data
	VRPN Latency

	Discussion
	Conclusion
	Acknowledgments
	References

